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ABSTRACT: The potential energy surface (PES) of the ground state of the beryllium dimer 

poses a significant challenge for high-level ab initio electronic structure methods. Here we 

present a systematic study of basis set effects over the entire PES of Be2 calculated at the full 

configuration interaction (FCI) level. The reference PES is calculated at the valence FCI/cc-

pV{5,6}Z level of theory. We find that the FCI/cc-pV{T,Q}Z basis set extrapolation 

reproduces the shape of the FCI/cc-pV{5,6}Z PES as well as the binding energy and 

vibrational transition frequencies to within ~10 cm–1. We also use the FCI/cc-pV{5,6}Z PES 

to evaluate the performance of truncated coupled cluster methods (CCSD, CCSD(T), 

CCSDT, and CCSDT(Q)) and contemporary density functional theory methods (DFT) 

methods for the entire PES of Be2. Of the truncated coupled cluster methods, CCSDT(Q)/cc-

pV{5,6}Z provides a good representation of the FCI/cc-pV{5,6}Z PES. The GGA 

functionals, as well as the HGGA and HMGGA functionals with low percentages of exact 

exchange tend to severely overbind the Be2 dimer, whereas BH&HLYP and M06-HF tend to 

underbind it. Range-separated DFT functionals tend to underbind the dimer. Double-hybrid 

DFT functionals show surprisingly good performance, with DSD-PBEP86 being the best 

performer. Møller–Plesset perturbation theory converges smoothly up to fourth order, 

however, fifth-order corrections have practically no effect on the PES. 
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1. Introduction 

The beryllium dimer (in the X 1∑+ ground state) is a pathologically multireference 

weakly bound molecule that has eluded electronic structure methods since the 1960’s (see 

ref. 1 for a comprehensive review of the previous literature).1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 The 

multireference character of this illusive diatomic system stems from the near-degeneracy of 

the 2s and 2p orbitals of the beryllium atom, which is a highly mutireference system on its 

own right.10,15 The weak bond in Be2 is due to a mixture of dynamic and static correlation 

effects.5 The combination of a pathologically multireference system and a weak binding 

energy make Be2 a notoriously challenging problem for electronic structure methods. The 

small bond dissociation energy (BDE) of about 900 cm–1 means that an error of 100 cm–1 ≈ 1 

kJ mol–1 (which is the target accuracy of highly accurate composite methods such as W4 

theory)16,17,18,19,20 translates to an error ~10% in the BDE. In order to achieve a more 

respectable error of ~1% in the BDE one has to calculate the BDE to within ~10 cm–1. In the 

present work we define benchmark accuracy as errors of ~1% from the reference value. The 

significant multireference character means that high-level ab initio methods have to be 

employed in conjunction with large basis sets in order to achieve this level of accuracy.  

A number of recent computational studies investigated the PES of Be2 around the 

equilibrium bond distance using high levels of theory.2,3,6 These studies have shown that very 

high levels of theory as well as secondary energetic contributions (e.g., core-valence, scalar 

relativistic, and diagonal Born–Oppenheimer corrections) are needed in order to reproduce 

the experimental energetic, structural, and spectroscopic parameters.  

Benchmarking approximate ab initio and density functional theory (DFT) procedures 

against high-level ab initio data has become an important general field over the past two 

decades (see for example refs. 21, 22, 23, 24, and 25 for an overview). In this context it is of 

interest to examine the performance of truncated coupled cluster (CC) and DFT methods for 
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the challenging potential energy surface (PES) of the Be2 dimer. To this end we calculate the 

entire PES of Be2 at the valence full configuration interaction (FCI) complete basis set (CBS) 

limit. Since there are only four valence electrons we are able to extrapolate the FCI energy to 

the CBS limit from the cc-pV5Z and cc-pV6Z basis sets. We use the valence FCI/cc-

pV{5,6}Z reference data to evaluate the performance of the following levels of theory for the 

entire PES of the Be2 dimer:  

(i) FCI/cc-pVnZ (n = D, T, Q, 5, and 6)  

(ii) HF/cc-pV{5,6}Z, CCSD/cc-pV{5,6}Z, CCSD(T)/cc-pV{5,6}Z, CCSDT/cc-

pV{5,6}Z, and CCSDT(Q)/cc-pV{5,6}Z 

(iii) Conventional DFT functionals from each rung of Jacob’s Ladder in 

conjunction with the cc-pV5Z basis set.  

(iv) Double-hybrid DFT (DHDFT) methods as well as standard and modified 

Møller–Plesset perturbation theory (MPn) methods (n = 2–5) in conjunction 

with the cc-pV5Z basis set. 

 

2. Computational Methods 

 All the ab initio calculations were carried out using the MRCC program suite on the 

Linux cluster of the Karton group at the University of Western Australia.26,27 In all cases the 

correlation-consistent basis sets of Dunning and co-workers were used.28,29,30 A number of 

DFT methods were evaluated for their performance in reproducing the FCI/cc-pV{5,6}Z 

PES. The cc-pV5Z basis set was used in all the DFT and DHDFT calculations. The 

considered functionals include: (i) the pure generalized gradient approximation (GGA) 

functionals BLYP,31,32 PBE,33,34 revPBE,35 B97-D3,36 and N12;37 (ii) the hybrid GGAs 

B3LYP,31,38,39 B3PW91,38,40 PBE0,41 and BHandHLYP;42 (iii) the hybrid meta-GGAs M06,43,44 

M06-2X,43,44 M06-HF,45 PW6B95,46 and MN15,47 (iv) the range-separated hybrids LC-
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BLYP,48 LC-PBE,48 LC-wPBE,48 CAM-B3LYP,49 and wB97X-D,50 and (v) the double 

hybrids51 B2-PLYP,52 mPW2-PLYP,53 B2GP-PLYP,54 the spin-component-scaled double 

hybrids DSD-BLYP,55 DSD-PBEP86,56 and the parameter-free PBE0-DH functional.57 In 

some cases, empirical D3 dispersion corrections58,59 were included using the Becke–Johnson60 

damping potential as recommended in ref. 36 (denoted by the suffix -D3BJ). 

 In addition, the performance of Møller–Plesset perturbation theory is evaluated. We 

consider the MPn methods (n = 2, 3, 4, 5), as well as the MPn.5 methods (n = 2, 3, and 4). 

The later are defined as the average of MPn and MPn+1.61,62 All of the DFT and MPn 

calculations were performed using the Gaussian 16 program suite.63 

 For all levels of theory, a 95-point potential energy curve was calculated. The single 

point energy calculations are carried out at bond distances r = req ± x, where req is the 

equilibrium bond distance at the valence FCI/cc-pV{5,6}Z level of theory and x is varied at 

0.001 Å intervals between x = –0.01 and +0.01 Å, at 0.01 Å intervals between x = –1.00 and 

+2.00 Å, at 0.02 Å intervals between x = –1.60 and +4.00 Å, and at 0.5 Å intervals between x 

= +4.0 and +14.0 Å. The absolute energies at all the considered levels of theory are given in 

Table S1 of the Supplementary Material.  

 Vibrational transition frequencies were obtained using the Duo computer program.64 In 

brief, Duo uses the sinc discrete variable representation (DVR) method to find the direct 

variational solution to the rotational-less diatomic nuclear motion Schrödinger equation.65 

Natural quintic spline interpolation was used between the data points to provide the full 

potential energy curve. These calculations used 5001 grid points in the range 4.0 – 19.0 a.u.; 

the results provided are converged to within 0.01 cm–1. 
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3. Results and Discussion  

3.1 Basis set convergence of the FCI energy.  Let us begin by examining the basis set 

convergence of the valence FCI energy. The PESs calculated at the FCI/cc-pVnZ levels of 

theory (n = D, T, Q, 5, and 6) are presented in Figure 1. Errors in the equilibrium bond 

distance (∆re) and BDE (∆De) as well as squared correlation coefficient (R2) with the FCI/cc-

pV{5,6}Z PES are given in Table 1. Inspection of Figure 1 reveals that the shape of the 

FCI/cc-pVDZ PES is fundamentally flawed. It exhibits two local minima, a deeper one at re = 

4.855 a.u. and a shallow one around re = 8 a.u. Previous studies using more approximate 

correlated ab initio methods have found that the shallow minimum at large distance is an 

artefact of the small basis set.5,12,13 The cc-pVTZ basis set results in the correct shape of the 

PES, however, the PES is too narrow and the binding energy is underestimated by as much as 

231 cm–1. The shape of the FCI/cc-pVQZ PES is closer to that of the FCI/cc-pV{5,6}Z PES, 

however, it is still visibly narrower and the binding energy is still underestimated by 105 cm–

1. It should be pointed out that extrapolating the PES from the cc-pV{T,Q}Z basis set pair, at 

the same computational cost, results in significantly better performance and reduces the error 

in the binding energy by an order of magnitude. The cc-pV5Z basis set still results in an 

appreciable error of 49 cm–1 in the binding energy. Extrapolating the PES from the cc-

pV{Q,5}Z basis set pair slightly overcorrects for the deficiencies of the cc-pV5Z basis set 

and results in a binding energy that is too large by 10 cm–1. The cc-pV6Z basis set still results 

in an appreciable error in the binding energy of 28 cm–1. In summary, only the cc-pV{T,Q}Z 

and cc-pV{Q,5}Z extrapolations result in benchmark accuracy.  
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Figure 1. Basis set convergence of the Be2 FCI potential energy surface. The PESs are 

calculated at the FCI/cc-pVnZ (n = D, T, Q, 5, and 6) and FCI/cc-pV{n,n+1}Z (T, Q, and 5) 

levels of theory (in a.u. and cm–1).  

 

Table 1. Basis set convergence of the Be2 FCI potential energy surface, equilibrium bond 

distances (re), bond dissociation energies (De), and vibrational transition frequencies. The 

reference values are calculated at the FCI/cc-pV{5,6}Z level of theory (bond distances are in 

a.u. and bond energies and frequencies are in cm–1).a 

Basis set R2 b ∆re ∆De ∆v1 ∆v2 ∆v3 ∆v4 ∆v5 
cc-pVDZ 0.4104 0.186 –734.788 –92.691 –187.168 –270.630 –341.336 –399.193 
cc-pVTZ 0.9471 0.060 –231.188 –11.205 –23.645 –38.596 –55.576 –74.672 
cc-pVQZ 0.9939 0.012 –105.038 –2.960 –6.253 –10.994 –16.569 –23.445 
cc-pV5Z 0.9988 0.006 –48.873 –1.362 –2.613 –4.710 –6.888 –9.635 
cc-pV6Z 0.9996 0.003 –28.291 –0.788 –1.505 –2.713 –3.956 –5.539 
cc-pV{T,Q}Z 0.9986 –0.024 –9.744 2.790 5.879 8.236 10.509 12.016 
cc-pV{Q,5}Z 0.9999 0.000 +10.133 0.264 1.069 1.600 2.749 4.036 
aErrors are calculated as [FCI value with smaller basis set] – [FCI/cc-pV{5,6}Z value].   
bSquared correlation coefficient with the FCI/cc-pV{5,6}Z PES. 

 

 In contrast to the binding energy, which converges exceedingly slow to the basis set 

limit, re converges much faster. Considering errors smaller than 1% in the equilibrium bond 

distance as benchmark accuracy (i.e., errors smaller than 0.0467 a.u.), all the basis sets apart 

from cc-pVDZ and cc-pVTZ achieve sub-benchmark accuracy. The cc-pV5Z and cc-pV6Z 
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basis set achieve errors that are one order of magnitude smaller than the above target error 

and the cc-pV{Q,5}Z extrapolation reproduces the cc-pV{5,6}Z re spot on.  

 It is also of interest to examine the basis set convergence of the vibrational transition 

frequencies (v = 1–5) obtained from the FCI/cc-pVnZ potential energy curves (n = D, T, Q, 5, 

and 6). These results are presented in Table 1. For all the considered basis sets, the errors 

with respect to the FCI/cc-pV{5,6}Z vibrational transition frequencies increase in the order 

∆v1 < ∆v2 < ∆v3 < ∆v4 < ∆v5. The largest errors (obtained for v5) are –399.1 (cc-pVDZ), –74.7 

(cc-pVTZ), –23.4 (cc-pVQZ), –9.6 (cc-pV5Z), and –5.5 (cc-pV6Z) cm–1. Table S2 of the 

Supplementary Material lists the relative errors in the vibrational transition frequencies. 

Inspection of these results reveals that the relative errors are fairly constant across all the 

vibrational transition frequencies (v1–v5). Namely they are ~81% (cc-pVDZ), ~12% (cc-

pVTZ), ~3% (cc-pVQZ), ~1.5% (cc-pV5Z), and ~1.0% (cc-pV6Z) cm–1. Overall, the results 

presented in Figure 1 and Table 1 demonstrate that the FCI PES converges smoothly, albeit 

slowly, with the basis set size. The cc-pV{T,Q}Z and cc-pV{Q,5}Z basis set extrapolations 

provide significantly better performance than the cc-pVQZ and cc-pV5Z basis sets, 

respectively, at the same computational cost. The FCI/cc-pV{T,Q}Z PES provides a good 

compromise between accuracy and computational cost and results in errors in the BDE and 

vibrational transition frequencies that are smaller or equal to ~10 cm–1.  

 

3.2 Truncated coupled-cluster methods. It is of interest to examine the performance of 

truncated coupled-cluster theory in reproducing the entire PES for the beryllium dimer. 

Figure 2 compares the HF, CCSD, CCSD(T), CCSDT, CCSDT(Q), and FCI. Errors in the 

bond distance, BDE, and vibrational transition frequencies with respect to the FCI/cc-

pV{5,6}Z values, as well as squared correlation coefficient (R2) with the FCI/cc-pV{5,6}Z 

PES are given in Table 2. In all cases the energies are extrapolated to the complete basis set 
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limit from the cc-pV5Z and cc-pV6Z basis sets. As expected,14 the Hartree–Fock PES is 

purely repulsive over the entire PES. However, we note in passing that adding the original D3 

dispersion correction58 to the HF/cc-pV{5,6}Z energies results in a minimum of 312 cm–1 at 

7.2 a.u. (Figure S1 of the Supplementary Material). Replacing the zero-damping function in 

the original D3 procedure with the finite Becke–Johnson damping function leads to a more 

attractive PES with a minimum of 2055 cm–1 at 5.1 a.u.  (see Supplementary Material).60 The 

valence CCSD/cc-pV{5,6}Z PES is strongly repulsive in the bonding region,66 however it 

exhibits a shallow minimum of 60.4 cm–1 at around 8.3 a.u. This is consistent with previous 

results obtained with smaller basis sets (see for example refs. 8 and 14). The CCSD(T)/cc-

pV{5,6}Z level of theory reproduces the correct shape of the PES. The predicted bond 

distance is longer by 0.039 a.u. relative to the FCI/cc-pV{5,6}Z result, however, the PES is 

much too narrow and the binding energy is underestimated by as much as 219.5 cm–1. 

Consideration of higher-order connected triple excitations in the CCSDT/cc-pV{5,6}Z PES 

leads to an improvement, however there is still a noticeable difference between the CCSDT 

and FCI PESs (with  R2 = 0.9932) and the binding energy is still underestimated by 82.4 cm–

1. The noniterative connected quadruple excitations have a significant effect on the PES and 

the CCSDT(Q)/cc-pV{5,6}Z PES reproduces the FCI/cc-pV{5,6}Z curve almost perfectly 

(R2 = 0.9998), except in the vicinity of the equilibrium distance where there is still a visible 

difference between the curves (Figure 2). In particular, the binding energy is underestimated 

by 16.6 cm–1.  
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Figure 2. Potential energy surfaces for the Be2 dimer calculated at the HF/cc-pV{5,6}Z, 

CCSD/cc-pV{5,6}Z, CCSD(T)/cc-pV{5,6}Z, CCSDT/cc-pV{5,6}Z, CCSDT(Q)/cc-

pV{5,6}Z, and FCI/cc-pV{5,6}Z levels of theory (in a.u. and cm–1). 

 

Table 2. Evaluation of truncated coupled cluster methods for the shape of the potential 

energy surface of Be2. The tabulated values are errors in the equilibrium bond distances (∆re), 

bond dissociation energies (∆De), and vibrational transition frequencies (∆vn). The reference 

values are calculated at the FCI/cc-pV{5,6}Z level of theory (bond distances are in a.u. and 

bond energies and frequencies are in cm–1).a 

Basis set R2 b ∆re ∆De ∆v1 ∆v2 ∆v3 ∆v4 ∆v5 
HF/cc-pV{Q,5}Z 0.0760 14.331 –872.879 –120.450 –227.143 –320.127 –397.626 –459.506 
CCSD/cc-pV{Q,5}Z 0.0711 3.663 –812.491 –107.740 –204.728 –290.994 –364.888 –426.345 
CCSD(T)/cc-pV{Q,5}Z 0.9639 0.039 –219.516 –12.548 –26.965 –45.000 –66.888 –92.379 
CCSDT/cc-pV{Q,5}Z 0.9932 0.027 –82.408 –5.838 –11.919 –19.256 –27.090 –35.641 
CCSDT(Q)/cc-pV{Q,5}Z 0.9998 0.003 –16.644 –1.139 –2.053 –3.642 –5.073 –6.778 

aErrors are calculated as [truncated CC value] – [FCI value].   
bSquared correlation coefficient with the FCI/cc-pV{5,6}Z PES. 

 

 For all the truncated CC methods, the errors with respect to the FCI/cc-pV{5,6}Z 

vibrational transition frequencies increase in the order ∆v1 < ∆v2 < ∆v3 < ∆v4 < ∆v5. Thus, it is 

informative to look at the largest errors obtained for v5, they are –459.5 (HF/CBS), –426.3 

(CCSD/CBS), –92.4 (CCSD(T)/CBS), –35.6 (CCSDT/CBS), and –6.8 (CCSDT(Q)/CBS) 

cm–1. On the other hand, the relative errors in the vibrational transition frequencies (given in 
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Table S3 of the Supplementary Material) are fairly constant across all the vibrational 

transition frequencies (v1–v5). Namely they are ~98% (HF/CBS), ~89% (CCSD/CBS), ~14% 

(CCSD(T)/CBS), ~6% (CCSDT/CBS), and ~1% (CCSDT(Q)/CBS) cm–1. Thus, it is evident, 

both from the perspective of the absolute errors and the relative errors, that CCSDT(Q) is the 

only method that achieves benchmark accuracy. We note, however, that the equilibrium 

distance is already converged to within 1% with the CCSD(T) and CCSDT methods (namely, 

these methods attain errors of 0.039 and 0.027 a.u., respectively).  

 

3.3 Density functional theory and Møller–Plesset perturbation theory. Figure 3 shows the 

PESs of a few GGA functionals (Table S4 of the Supplementary Material lists errors in re, De, 

and vn). All the GGA functionals result in a PES that is much too wide and severely overbind 

the beryllium dimer. In particular, BLYP and PBE result in BDEs of 2163.0 and 3449.2 cm–1, 

respectively. revPBE results in a PES that is almost identical to that of PBE. As expected, 

addition of dispersion corrections increases the binding energies further and results in 

significantly larger BDEs (Figure 3). In the reminder this subsection we will not consider 

dispersion corrections for DFT functionals that overbind the beryllium dimer. We have also 

considered the local nonseparable gradient approximation N12 functional, which results in a 

BDE sandwiched between those of the BLYP and PBE functionals. Interestingly, both the 

BLYP and N12 functionals exhibit a shallow maximum at long distances. For BLYP the 

height of this maximum is 47.5 cm–1 around  re = 9.6 a.u. and for N12 it is 136.7 cm–1 around  

re = 8.9 a.u.  
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Figure 3. Potential energy surfaces for the Be2 dimer calculated with a number of GGA 

functionals in conjunction with the cc-pV5Z basis set (in a.u. and cm–1). 

 

Despite the fact that the GGA functionals in Figure 3 give a very poor description of 

the FCI/cc-pV{5,6}Z PES, their errors in the equilibrium bond distances are not very large. 

In particular, BLYP and PBE underestimate re by ~0.08 a.u. and N12 overestimates it by 

~0.03 a.u. 

 Hybrid GGA functionals are expected to perform better than GGAs since the purely 

repulsive Hartree–Fock potential compensates for the severe overbinding of the GGAs. 

Figure 4 gives the PESs for a number of HGGAs. Inspection of this figure reveals that 

HGGAs with low percentages of HF exchange still severally overbind the Be2 dimer, albeit to 

a lesser extent than the GGAs. The popular B3LYP functional (20% HF exchange) predicts a 

binding energy of 1492.1 cm–1. This represents a significant improvement over BLYP, which 

predicts a BDE of 2163.0 cm–1. Replacing the LYP correlation functionals with PW91 results 

in a significantly wider PES and a binding energy of 2085.9 cm–1. In contrast, BH&HLYP 

with 50% exact exchange severally underbinds the dimer, with a binding energy of 374.8 cm–

1. Inclusion of the D3BJ dispersion correction overcorrects for this deficiency and leads to a 
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binding energy of 1288.2 cm–1. The PBE0 functional (25% HF exchnge) results in a very 

wide PES and a binding energy of 2307.7 cm–1. This represents a significant improvement 

over PBE, which predicts a binding energy of 3449.2 cm–1.  

 

 

Figure 4. Potential energy surfaces for the Be2 dimer calculated with a number of hybrid 

GGA functionals in conjunction with the cc-pV5Z basis set (in a.u. and cm–1). 

 

 Figure 5 depicts the PESs obtained with a number of hybrid-meta GGA from the 

Truhlar group. It is instructive to compare the PESs obtained with M06 (27% exact 

exchange), M06-2X (54% exact exchange), and M06-HF (100% exact exchange).  M06 

severally overbinds the Be2 dimer and predicts a binding energy of 1822.8 cm–1. M06-HF 

underbinds the dimer with a binding energy of 760.7 cm–1. However, M06-2X predicts a 

binding energy of 928.8 cm–1, which deviates from the FCI values by only 55.9 cm–1. In terms 

of predicting the binding energy, M06-2X shows the best performance of all the conventional 

DFT functionals (i.e., excluding the DHDFT methods). Nevertheless, it should be pointed out 

that M06-2X does not give a good representation of the shape of the FCI PES as 
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demonstrated, for example, from a squared correlation coefficient of R2 = 0.8783 with the 

FCI/cc-pV{5,6}Z PES.  

 

 

Figure 5. Potential energy surfaces for the Be2 dimer calculated with a number of hybrid-

meta GGA functionals in conjunction with the cc-pV5Z basis set (in a.u. and cm–1). 

 

 Nearly all of the GGA, HGGA, and HMGGA functionals considered so far tend to 

overbind the Be2 dimer (the only exceptions being BH&HLYP and M06-HF). In contrast, the 

considered range-separated functionals tend to systematically underbind the dimer. These 

results are presented in Figure 6. LC-BLYP gives a very shallow PES with a minimum of 

95.8 cm–1 at ~ 7 a.u. LC-PBE better represents the FCI PES, but still shows poor performance 

with a wide PES and a binding energy of 677.5 cm–1. These results should be compared with 

the results for BLYP and PBE, which severally overbind the Be2 dimer (Figure 3). Similarly, 

CAM-B3LYP results in a BDE of 418.8 cm–1, in contrast to B3LYP which predicts a binding 

energy of 1492.1 cm–1 (Figure 4). Finally, we note that ωB97X-D gives the best performance 

with a BDE of 735.9 cm–1, which is lower than the FCI BDE by 137.0 cm–1. 
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Figure 6. Potential energy surfaces for the Be2 dimer calculated with a number of range-

separated DFT functionals in conjunction with the cc-pV5Z basis set (in a.u. and cm–1). 

 

Figure 7 gives the PESs obtained with a number of double-hybrid DFT functionals. 

With the exception of three functionals (PBE0-DH, B2GP-PLYP, and DSD-BLYP), all the 

considered DHDFT functionals show surprisingly good performance in both reproducing the 

shape and binding energy of the FCI/CBS PES. Let us begin with the poor performers. Both 

DSD-BLYP and B2GP-PLYP underbind the Be2 dimer, for example B2GP-PLYP underbinds 

it by 201.9 cm–1 with a BDE of 670.9 cm–1. Addition of the D3BJ dispersion correction 

overcorrects for this deficiency and results in a very wide PES and a BDE of 1207.4 cm–1. 

PBE0-DH gives an even wider PES with a binding energy of 1626.3 cm–1. All of the other 

DHDFT functionals reproduce the FCI/CBS PES very well. The older-generation B2-PLYP 

and mPW2-PLYP predict binding energies that are too low by 46.7 and 40.3 cm–1, 

respectively. It is also worth pointing out that mPW2-PLYP predicts the FCI/CBS vibrational 

transition frequencies to within 10 cm–1 (Table 3). Quite remarkably, the more recently 

developed spin-component scaled DHDFT DSD-PBEP86 functional reproduces the FCI/CBS 
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PES spot on with a binding energy of 872.3 cm–1, less than 1 cm–1 from the FCI/CBS binding 

energy.  

 

Figure 7. Potential energy surfaces for the Be2 dimer calculated with a number of double-

hybrid DFT functionals in conjunction with the cc-pV5Z basis set (in a.u. and cm–1). 

 

Table 3. Evaluation of DHDFT methods for the shape of the potential energy surface of Be2. 

The tabulated values are errors in the equilibrium bond distances (∆re), bond dissociation 

energies (∆De), and vibrational transition frequencies (∆vn). The reference values are 

calculated at the FCI/cc-pV{5,6}Z level of theory (bond distances are in a.u. and bond 

energies and frequencies are in cm–1).a 

Functional R2 b ∆re ∆De ∆v1 ∆v2 ∆v3 ∆v4 ∆v5 
B2-PLYP 0.9886 0.095 –46.681 –0.190 3.297 10.280 22.373 39.591 
mPW2-PLYP 0.9814 0.128 –40.292 –6.460 –9.422 –9.038 –3.627 6.951 
B2GP-PLYP 0.8871 0.197 201.942 –20.090 –37.835 –53.362 –64.843 –71.804 
DSD-PBEP86 0.9364 0.209 0.585 –18.735 –34.162 –46.181 –52.725 –53.116 
PBE0-DH 0.9651 0.161 –753.382 8.150 23.358 45.678 76.975 117.434 

aErrors are calculated as [DFT/cc-pV5Z value] – [FCI/cc-pV{5,6}Z value].   
bSquared correlation coefficient with the FCI/cc-pV{5,6}Z PES. 

 

 Finally, it is of interest to compare the performance of DHDFT to MPn theory. These 

results are presented in Figure 8. Inspection of Figure 8 reveals that the MPn series up to 

MP4 converges monotonically towards the FCI solution in the order MP2 ! MP2.5 ! MP3 
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! MP3.5 ! MP4. For example, the following binding energies are obtained: 440.3 (MP2), 

524.4 (MP2.5), 614.4 (MP3), 693.5 (MP3.5), and 783.3 (MP4) cm–1.  However, the MP4.5 

and MP5 PESs provide no further improvement and are practically identical to the MP4 PES 

(e.g., the predict binding energies of 786.2 (MP4.5) and 790.7 (MP5) cm–1). In light of these 

results it is clear that DHDFT provides a much better description of the PES compared to the 

MPn methods.  

 

Figure 8. Potential energy surfaces for the Be2 dimer calculated with the MPn methods in 

conjunction with the cc-pV5Z basis set (in a.u. and cm–1).  

 

4. Conclusions  

We have obtained the entire PES of the beryllium dimer at the FCI/cc-pV{5,6}Z level of 

theory. We use this reference data to evaluate (i) the basis set convergence of valence the FCI 

method; (ii) the performance of truncated coupled cluster methods at the infinite basis-set 

limit; (iii) the performance of DFT methods across the rungs of Jacob’s Ladder; and (iv) the 

performance of standard and modified MPn methods. Our main findings can be summarized 

as follows:  
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" The FCI/cc-pV{T,Q}Z basis set extrapolation reproduces the shape of the FCI/cc-

pV{5,6}Z PES as well as the binding energy and vibrational transition frequencies to 

within ~10 cm–1. 

" Of the truncated coupled cluster methods, CCSDT(Q)/cc-pV{5,6}Z provides a very 

good representation of the FCI/cc-pV{5,6}Z PES 

" GGA functionals, as well as hybrid-GGA and meta-hybrid-GGA functionals with low 

percentages of exact exchange, tend to severely overbind the Be2 dimer over the entire 

PES.  

"  Range-separated functionals tend to underbind the Be2 dimer.  

" DHDFT functionals show exceptionally good performance relative to their 

computational cost.  

" Møller-Plesset perturbation theory converges smoothly up to fourth order, however, 

5th-order corrections have a minor effect on the PES.  
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# SUPPLEMENTARY MATERIAL 

Absolute energies at all the considered levels of theory (Table S1); Relative errors in the 

vibrational transition frequencies for the ab initio methods (Tables S2 and S3); Errors in the 

bond distance, BDE, and vibrational transition frequencies for the DFT and MPn methods 
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with respect to the FCI/cc-pV{5,6}Z values, as well as squared correlation coefficient (R2) 

with the FCI/cc-pV{5,6}Z PES (Table S4); PES calculated at the HF-D3/cc-pV{5,6}Z and 

HF-D3BJ/cc-pV{5,6}Z levels of theory (Figure S1).  
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