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The question of whether intermolecular interactions in crystals originate from

localized atom� � �atom interactions or as a result of holistic molecule� � �molecule

close packing is a matter of continuing debate. In this context, the newly

introduced Roby–Gould bond indices are reported for intermolecular ‘�-hole’
interactions, such as halogen bonding and chalcogen bonding, and compared

with those for hydrogen bonds. A series of 97 crystal systems exhibiting these

interaction motifs obtained from the Cambridge Structural Database (CSD) has

been analysed. In contrast with conventional bond-order estimations, the new

method separately estimates the ionic and covalent bond indices for

atom� � �atom and molecule� � �molecule bond orders, which shed light on the

nature of these interactions. A consistent trend in charge transfer from halogen/

chalcogen bond-acceptor to bond-donor groups has been found in these

intermolecular interaction regions via Hirshfeld atomic partitioning of the

electron populations. These results, along with the ‘conservation of bond orders’

tested in the interaction regions, establish the significant role of localized

atom� � �atom interactions in the formation of these intermolecular binding

motifs.

1. Introduction

The identification and characterization of novel inter-

molecular interactions and the probing of their contribution to

crystal packing are topics of interest in crystal engineering

(Desiraju, 2013). In recent years, non-bonding interactions

such as halogen bonds (XBs) (Cavallo et al., 2016; Politzer et

al., 2013; Desiraju et al., 2013; Bui et al., 2009), chalcogen

bonds (YBs) (Brezgunova et al., 2013; Wang et al., 2009;

Thomas et al., 2015), carbon bonds (Mani & Arunan, 2013;

Thomas et al., 2014; Escudero-Adán et al., 2015) and pnicogen

bonds (Bauzá et al., 2013; Scheiner, 2013; Sarkar et al., 2015)

have attracted significant attention from both experimental

and computational chemists. These interactions, broadly

known as �-hole interactions, have been identified as origi-

nating from the electropositive regions (�-holes) around

atoms which are directed to nucleophilic atoms such as O, N, F

etc. (Clark et al., 2007). While the occurrence of prominent

�-hole interactions such as XBs and YBs is increasingly being

reported in the solid and solution states, it is clear that a more

quantitative understanding of these interactions is needed to

assess their significance in supramolecular chemistry and

crystal engineering.

Spackman and co-workers have pointed out that, irrespec-

tive of their classifications, all these �-hole interactions have a
common origin of electrostatic complementarity (Edwards et
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al., 2017). Furthermore, in a recent essay Dunitz questioned

the validity of such atom� � �atom ‘bonds’, arguing that they

were seldom structure-determining and needed to be regarded

as a result of holistic molecule� � �molecule interactions in

crystal packing (Dunitz, 2015). Alternative arguments were

raised by Desiraju, who noted that short atom� � �atom contact

distances observed in crystals could indeed be linked to

kinetically derived structural units and that they were most

often found to be ‘bonding’ (Thakur et al., 2015). Lecomte et

al. (2015) argued that such contacts could be characterized by

electron-density bond paths indicating stabilizing interactions

and they could have the potential to determine crystal struc-

tures.

In the light of this atom� � �atom versusmolecule� � �molecule

interaction debate, and in the general interest of exploring the

nature and relative strengths of such intermolecular inter-

actions, we asked these simple and rather fundamental ques-

tions: ‘How much of a bond is an intermolecular interaction?’,

and ‘How ionic or covalent is a �-hole interaction?’. To answer
these, we estimated the bond orders of a series of 97 molecular

complexes selected from the Cambridge Structural Database

(CSD; Groom et al., 2016) which exhibit halogen bonds,

chalcogen bonds and the well known classes of hydrogen

bonds, using the Roby–Gould bond indices recently intro-

duced by us (Gould et al., 2008). While the commonly

employed approaches to quantifying such interactions are

based on interaction energy (Mackenzie et al., 2017) (a

molecule� � �molecule descriptor) and electron-density

topology (Johnson et al., 2010; Grabowski, 2011; Zou et al.,

2017) (essentially an atom� � �atom descriptor), the Roby–

Gould approach covers both these aspects in terms of separate

atom� � �atom and molecule� � �molecule bond indices. As

opposed to simplistic chemical descriptors such as bond-

valence models (Brown, 2009), the Roby–Gould method

uniquely and separately defines the ionic and covalent bond

indices, which add up in a Pythagorian fashion to provide the

total bond order (Gould et al., 2008).

Our previous work has demonstrated that the Roby–Gould

bond indices (RGBIs) correlate well with a chemist’s notion of

bonding, in line with the Lewis picture and Pauling’s percen-

tage ionicity estimates (Gould et al., 2008). Hence, the RGBIs

evaluated in this study provide a means of comparing inter-

molecular interactions with well known classes of bonds on a

relative scale. Our recent study showed that RGBIs could be

used to predict the fragmentation of molecules and thereby

the base peaks in mass spectra (Alhameedi et al., 2018).

Although we have recently applied the Roby–Gould

method to quantum crystallographic X-ray wavefunctions to

analyse chemical bonding (Grabowsky et al., 2012; Thomas et

al., 2015), the bond orders of intermolecular interactions

remain largely underexplored. The few computational studies

in the literature probing the bond orders of intermolecular

interactions are based on the natural bond orbital (NBO)

approach (Shahi & Arunan, 2014). However, the NBO

approach has major limitations in its applicability to inter-

molecular interactions, as it is based on the projection of the

electron population onto Lewis-like orbitals (Stone, 2017). In

the Roby–Gould method, the electronic population is

projected onto occupied atomic natural orbitals and the bond-

order estimation does not depend on the criteria of whether

the orbitals are Lewis-like or not. This makes the Roby–Gould

method a superior approach in studying intermolecular

interactions, as intermolecular interactions do not obey Lewis-

type bonding.

Here, we evaluate the extent of electron sharing and charge

transfer in �-hole interactions and hydrogen bonds using

RGBIs. We have also examined the correlations between bond

order, interaction distance, charge transfer and intermolecular

interaction energy. In addition, the ‘conservation of bond

order’ in the interaction regions (as a result of the formation

of a D—X� � �A interaction and the weakening of the D—X

covalent bond) has been tested in a selected subset of exam-

ples.

2. Methods and materials

2.1. Roby–Gould bond indices

The key advantages of the Roby–Gould method, and the

reason we have applied this to study intermolecular inter-

actions, are the following:

(i) The Roby–Gould method produces two independent

covalent and ionic bonds using the expectation values of

quantum mechanical operators, and which are furthermore

derived from well known ideas of bonding and antibonding

orbitals.

(ii) It is well defined for any quantum chemical method and

using any kind of basis set. In particular, the results converge

when using large basis sets.

(iii) It produces bond indices not only between atoms but

also between groups of atoms.

(iv) It produces reasonable results (according to the Lewis

theory) for bond indices at transition states i.e. ‘half’ bonds

(Gould et al., 2008).

(v) The RGBIs agree with the indices from classical Lewis

structures which are widely used in organic chemistry, and for

classic ionic bonds such as Li—F and Na—F we obtain ionic

bond indices of nearly 1, with a percentage ionicity of around

90%.

Despite the fact that the RGBIs correlate very well with the

standard Lewis picture of chemical bonding for intramolecular

bonds, one should be reminded of the non-uniqueness of

bond-order estimation approaches such as the Roby–Gould

method, as they depend upon the partitioning of either real

space or Hilbert space (in the case of RGBIs), which is non-

unique. Hence, we recommend that the RGBI values be used

to understand trends and relative strengths rather than as

absolute indications of bonding; for the latter, bond-dissocia-

tion energies may be more appropriate.

Apart from RGBIs, a number of different bond-order

definitions have been reported to characterize the nature of a

chemical bond: the quantum theory of atoms in molecules

delocalization index (QTAIM DI) [Reference?], the shared-

electron distribution index (SEDI) (Bader & Stephens, 1974,
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1975; Fradera et al., 1999; Chávez-Calvillo et al., 2015),

Hirshfeld-I SEDI [applying the iterative Hirshfeld-I approach

(Bultinck et al., 2007) to define the atomic domains], Mayer

bond order (MBO) (Mayer, 1983), bond orders derived from

natural bond orbital (NBO) analysis and NBO bond order are

the most popular examples. These bond orders are generally

considered to be descriptors of electron sharing, so these

approaches are sometimes referred to as covalent bond orders,

whereas RGBIs have a separate definition for the ionic

operator, in addition to the covalent operator, which can be

applied for polar and nonpolar chemical bonds.

The Roby covalent bond index is defined based on the

shared electron population sAB between any two atoms A and

B as

SAB ¼ nA þ nB � nAB; ð1Þ
where the electron populations for the subspaces of atoms A,

B and the diatom AB are given by nA, nB and nAB , respec-

tively:

nA ¼ TrPAD ¼ hPAi; ð2Þ

nB ¼ TrPBD ¼ hPBi; ð3Þ

nAB ¼ TrPABD ¼ hPABi: ð4Þ
Here, h�i is the usual expectation value with respect to a

molecular wavefunction, D is the corresponding one-electron

reduced density operator, [Tr is what?] and PA and PB are

projection operators (see Gould et al., 2008). In this study, we

have used the extended Roby analysis and the new definitions

for covalent, ionic and total bond indices, respectively (Gould

et al., 2008),

cAB ¼ R

2jRj
� �

; iAB ¼ I

2jIj
� �

; �AB ¼ c2AB þ i2AB
� �1=2

: ð5Þ

R and I are the Roby covalent operator and the corresponding

ionic operator, respectively,

R ¼ PA þ PB � PAB; I ¼ PA � PB: ð6Þ
Thus, in this approach, a chemical bond is regarded as a two-

dimensional quantity characterized by a pair of numbers (c, i)

obtained quantum mechanically as the expectation value of

two operators, and whose magnitude is �. The paper by Gould

et al. justifies the form of these operators, which turn out to be

constructed as a sum of terms over certain ‘angle’ subspaces,

e.g.

c ¼
X

�;� 6¼0;�=2

c�; ð7Þ

and likewise

i ¼
X

�;� 6¼0;�=2

i�: ð8Þ

The angles � characterize either the degree of overlap, or

alternatively the angle between the orbitals on the two atom

centres which have ‘maximum or minimum overlap’ (for the

covalent bond index) or ‘maximum or minimum electron

transfer’ (for the ionic bond index). Within each of the angle

subspaces, the bond index is calculated as half the number of

electrons in the bonding orbitals minus half the number of

electrons in the antibonding orbitals,

c� ¼ ðcþ� � c�� Þ=2; ð9Þ

i� ¼ ðiþ� � i�� Þ=2; ð10Þ
i.e. Coulson’s rule, but in the Roby–Gould theory this is

generalized to any pair of atoms in a molecule. Having defined

the covalent and ionic indices, the percentage covalency and

ionicity of a chemical bond may be defined as

%Covalency ¼ 100� c2AB
�2AB

; %Ionicity ¼ 100� i2AB
�2AB

: ð11Þ

For more details, see Gould et al. (2008).

2.2. Selection of the data set

We have restricted our attention to short intermolecular

atom� � �atom distances D—X� � �A between a donor-atom pair

D—X (bond donor) and an acceptor atom A. Specifically, we

considered hydrogen bonds with D—X = C—H, N—H, O—H

with acceptor atoms A = O, N, and we also considered weak

halogen and chalcogen atom� � �atom distancesD� � �A between

all donor atoms D = Cl, Br, S, Se. For this purpose, we sear-

ched the CSD using geometric and structural constraints as
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Figure 1
Distributions of RGBI values for (a) atom� � �atom bond indices and (b)
molecule� � �molecule bond indices for different interaction types,
represented in box-and-whisker plots. The whiskers represent the range
of RGBI values, the height of the boxes represents the interquartile
range, and the dots inside the boxes represent the median for each
interaction type. For molecule� � �molecule bond indices, only dimers with
single atom� � �atom short contacts are included in plot (b). The number of
interactions (n) in each class is given in parentheses.
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follows: (i) no disorder, only organic molecules, only single-

crystal data; (ii) the number of atoms in the asymmetric unit

was less than 20; (iii) interaction distances were less than the

sum of the van der Waals radii by at least 0.2 Å; and (iv) for

examples of hydrogen-bonded complexes only neutron

diffraction structures were chosen, and for XBs and YBs we

have reset the X—H bond lengths to the normalized neutron

diffraction distances. The number of interactions of each type

is also given beside each class in the abscissa of Fig. 1.

2.3. Wavefunctions and interaction energies

Cartesian geometries for selected monomers and dimers

involved in the short atom� � �atom contacts under study were

obtained from the crystallographic information files (CIFs) in

the CSD. Wavefunctions were calculated at the single-point

crystal geometry M062x/Def2TZVP level with Cartesian

Gaussian basis sets, using the GAUSSIAN09 program (Frisch

et al., 2009). The interaction-energy calculations for the

molecular dimers were performed without BSSE correction,

considering the large basis set used. Further, for testing the

idea of ‘conservation of bond orders’ a series of 15 dimers

were selected based on their small molecular size, and they

were optimized at the M062x/Def2SVP level for the bond-

order analysis.

2.4. Bond indices and Hirshfeld charges

RGBIs were calculated using the method explained by

Gould et al. (2008) using the freely available TONTO program

package (Jayatilaka & Grimwood, 2003) with the GAUSSIAN

FChk files (the text version of the GAUSSIAN checkpoint

file). Hirshfeld charges (Hirshfeld, 1977) were calculated from

the GAUSSIAN FChk files using TONTO.

3. Results and discussion

3.1. Bond indices for different classes of non-covalent
interactions

We have analysed the RGBIs for the data set of 106 inter-

acting molecular dimers, with the atom� � �atom and mol-

ecule� � �molecule RGBI values calculated separately. The
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Table 1
Atom� � �atom and molecule� � �molecule RGBIs, covalent index (c), ionic index (i) and total bond index (�) for halogen-bonding interactions (X� � �A,X=
Cl, Br, A = N, O).

The distances d and interpenetration of the van der Waals spheres (�d) are given in ångström. Single- and multiple-contact interactions in the dimers are marked
with the superscripts s and m, respectively.

X� � �A d(X� � �A) �d(X� � �A) Atom� � �atom indices Molecule� � �molecule indices

CSD refcode (Å) (Å) c i � %c c i � %c

Cl� � �N
CCACENNs 2.984 0.316 0.06 0.44 0.45 1.79 0.14 �0.60 0.61 5.52
DESKER01s 2.954 0.346 0.07 0.35 0.36 3.31 0.18 �0.58 0.61 8.69
NABZASs 3.092 0.208 0.04 �0.09 0.09 16.45 0.11 0.10 0.15 57.89
PCLPYRs 3.014 0.286 0.06 0.27 0.28 4.87 0.14 �0.02 0.14 97.39
VUGSIZs 3.100 0.200 0.04 �0.10 0.11 11.92 0.10 0.21 0.23 17.68
PALPAVm 3.097 0.203 0.04 0.00 0.04 98.61 0.17 0.07 0.18 84.87
XIZPONm 3.090 0.210 0.03 �0.05 0.05 23.21 0.16 �0.28 0.32 24.01
Cl� � �O
BEDMONNs 3.033 0.237 0.03 �0.08 0.08 16.03 0.08 �0.18 0.19 15.52
BZQDCL11s 3.056 0.214 0.03 �0.08 0.08 10.90 0.09 0.06 0.11 70.69
CORDUIs 3.047 0.223 0.03 �0.07 0.07 14.15 0.07 0.11 0.13 28.29
DCLBZQ20s 3.006 0.264 0.03 �0.07 0.08 14.86 0.09 0.08 0.13 55.12
IRUFEH01s 2.966 0.304 0.03 �0.09 0.10 11.00 0.11 �0.40 0.42 6.84
JOJTILs 2.948 0.322 0.06 �0.16 0.17 10.76 0.11 �0.01 0.11 99.37
RUBSUDs 2.949 0.321 0.04 �0.11 0.12 10.47 0.10 0.22 0.24 17.48
TCACAD01s 3.029 0.241 0.03 �0.06 0.07 21.01 0.09 0.08 0.12 54.42
GEXWUBs 3.002 0.268 0.03 �0.10 0.10 7.47 0.08 0.07 0.11 52.07
PEPFULs 2.962 0.308 0.03 �0.03 0.04 40.53 0.09 �0.06 0.10 66.68
Br� � �N
BCACENNs 2.978 0.422 0.09 0.40 0.41 4.53 0.19 �0.46 0.50 14.78
BONFITs 2.863 0.537 0.13 0.25 0.28 22.17 0.21 �0.05 0.21 95.10
QONHUXs 3.093 0.307 0.07 0.24 0.25 9.23 0.16 �0.07 0.18 82.95
RIRFOONs 3.164 0.236 0.06 0.26 0.26 5.61 0.14 �0.22 0.26 27.91
KUYCUDs 2.999 0.401 0.09 0.30 0.32 8.40 0.24 0.46 0.51 21.20
Br� � �O
BMLTAANs 3.082 0.288 0.04 �0.11 0.12 10.36 0.11 0.00 0.11 99.81
CIRSONNs 3.149 0.221 0.03 �0.12 0.13 5.18 0.12 0.09 0.15 62.28
JEVVOWs 2.895 0.475 0.07 0.06 0.09 54.37 0.14 �0.08 0.16 77.75
VAQXUGs 3.160 0.210 0.03 �0.10 0.10 10.75 0.12 �0.04 0.13 92.26
VEWTAUs 2.893 0.477 0.06 0.07 0.10 42.44 0.14 0.00 0.14 99.99
VEWTEYs 3.164 0.206 0.03 �0.12 0.13 5.82 0.10 �0.16 0.19 28.93
VITVEZs 3.063 0.307 0.04 �0.07 0.08 27.52 0.11 0.14 0.18 39.26
WADFIRs 3.009 0.361 0.06 0.05 0.08 60.60 0.13 0.16 0.21 38.82
ACETBR02m 2.755 0.615 0.14 0.05 0.15 89.93 0.32 �0.66 0.73 19.09
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results for halogen- and chalcogen-bonding interactions are

presented in Tables 1 and 2. The RGBI values for a set of 42

molecular pairs formed by hydrogen bonds are given in Table

S1 of the supporting information for comparison, and only

summary statistics are presented here.

3.1.1. Atom� � �atom bond indices. Atom� � �atom RGBI

values were calculated by considering the projection into the

atomic natural orbitals of the two atoms involved in the

intermolecular interaction (atoms X and A in an interaction

X� � �A). The distribution of total atom� � �atom RGBI values

(�) is shown in Fig. 1(a). For the hydrogen-bond (HB) inter-

actions (Table S1 in the supporting information), we generally

observe that a hierarchy of RGBI values can be shown as

O�H� � �O ’ O�H� � �N>N�H� � �O>N�H� � �N
>C�H� � �O>C�H� � �N:

RGBI values for each type of interaction were averaged to

find this hierarchy. The order is in line with the chemical

wisdom derived from crystal structural analyses over the years

and from crystal-engineering experiments. This result shows

that aD—H bond donor group with a higher electronegativity

atom D leads to stronger HBs. The RGBI values of strong

HBs such as O—H� � �O, N—H� � �O and O—H� � �N are in the

range 0.22–0.48, and those for weak HBs like C—H� � �O and

C—H� � �N are in the range 0.05–0.21. For �-hole interactions,

the RGBI value ranges are 0.04–0.45 for halogen bonds (XBs)

and 0.08–0.3 for chalcogen-bond (YB) interactions (Tables 1

and 2, respectively). For XBs, a hierarchy of RGBI values can

be shown as

Br� � �N>Cl� � �N and Br� � �O>Cl� � �O:

This may be rationalized based on the higher polarizability of

a Br atom compared with a Cl atom when acting as halogen-

bond donors. Similarly, the following trend is observed for

YBs:
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Table 2
Atom� � �atom and molecule� � �molecule RGBIs, covalent index (c), ionic index (i) and total bond index (�) for chalcogen-bonding interactions (Y� � �A, Y
= S, Se, A = N, O).

The distances d and inter-penetration of the van der Waals spheres (�d) are given in ångström. Single- and multiple-contact interactions in the dimers are marked
with the superscript s and m, respectively (and m* for those that have two identical interactions within one dimer due to symmetry).

Y� � �A d(Y� � �A) �d(Y� � �A)
Atom� � �atom indices Molecule� � �molecule indices

CSD refcode (Å) (Å) c i � %c c i � %c

S� � �N
CEBYUDs 3.050 0.300 0.08 0.07 0.11 60.95 0.14 0.16 0.22 45.15
QOBFUIs 2.992 0.358 0.08 0.03 0.09 89.27 0.21 �0.39 0.44 21.44
SAZCECs 3.096 0.254 0.08 0.05 0.09 73.53 0.18 0.32 0.37 24.27
GEDHAYm 2.910 0.440 0.11 0.02 0.11 97.25 0.36 0.23 0.43 70.46
GEDHAYm 3.086 0.264 0.08 �0.06 0.10 63.18
IFULUQ04m 3.006 0.344 �0.06 �0.11 0.13 23.20 0.83 1.24 1.49 30.60
WASHEEm 3.003 0.347 0.27 �0.13 0.30 80.08 0.81 �1.28 1.52 28.31
WASHEEm 2.992 0.358 �0.06 �0.11 0.12 23.20
WUXPAGm 3.008 0.342 0.10 0.00 0.10 99.98 0.31 �0.15 0.35 81.77
WUXPAGm 3.024 0.326 0.08 �0.01 0.08 99.28
S� � �O
PAFVEYs 3.029 0.291 0.07 �0.19 0.21 13.09 0.18 0.27 0.32 29.95
WOCQEKs 2.900 0.420 0.08 �0.12 0.14 34.90 0.19 0.73 0.76 6.56
IMTAZONs 3.097 0.223 0.05 �0.10 0.12 19.03
ADOFEFm* 3.101 0.219 0.05 �0.14 0.15 10.52 0.25 0.00 0.25 100.0
ADOFEFm* 3.241 0.079 0.03 �0.13 0.14 5.64
MAVRADm 3.042 0.278 0.06 �0.19 0.20 8.79 0.22 0.50 0.55 16.67
MEHNIYm 3.042 0.278 0.05 �0.12 0.13 12.95 0.47 0.37 0.60 61.43
NAHMUEm 2.945 0.375 0.06 �0.19 0.20 10.09 0.18 0.46 0.49 13.64
NAHMUEm 2.995 0.325 0.05 �0.19 0.20 7.28
PUDMUWm 2.993 0.327 0.07 �0.13 0.15 24.26 0.24 0.39 0.46 27.66
PUDMUWm 3.136 0.184 0.03 �0.09 0.09 7.53
QELQEEm 3.013 0.307 0.06 �0.17 0.18 12.21 0.17 0.29 0.34 26.10
QELQEEm 3.117 0.203 0.04 �0.15 0.15 6.83
ZAVHEJm* 2.924 0.396 0.08 �0.18 0.20 16.93 0.25 0.00 0.25 100
Se� � �N
BESEAZ01s 3.155 0.295 0.10 �0.21 0.23 17.54 0.22 0.34 0.40 29.56
FENFIONs 3.154 0.296 0.10 �0.01 0.10 98.05 0.29 0.74 0.79 13.34
WERYATs 2.843 0.607 0.15 0.00 0.15 99.98 0.48 0.24 0.53 79.09
NECZUQm* 2.877 0.573 0.18 �0.15 0.23 56.55 0.71 0.00 0.71 100.00
SECNBZm 3.058 0.392 0.10 0.14 0.17 32.62 0.44 �0.29 0.52 70.26
Se� � �O
BOJCOSm* 3.042 0.378 0.08 �0.21 0.23 13.69 0.27 0.00 0.27 100.00
LEDGADm 3.188 0.232 0.05 �0.09 0.11 22.64 0.22 0.05 0.23 94.68
LEDGADm 3.393 0.027 0.20 �0.09 0.09 4.29
LEVJOMm 3.049 0.371 0.08 �0.26 0.27 8.43 0.20 0.86 0.88 5.04
MUSCIMm 3.064 0.356 0.08 �0.18 0.19 16.60 0.38 0.60 0.71 28.71
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Se� � �N> S� � �N and Se� � �O> S� � �O:

The hierarchies of the various interaction types discussed

above are based on average values of the total RGBIs. It may

be noted that the RGBI values of some interaction types show

a wide range of values, as represented by the whiskers in Fig. 1.

In general, a hierarchy of HB > XB > YB is observed in terms

of atom� � �atom bond orders.

3.1.2. Molecule� � �molecule bond indices. Mol-

ecule� � �molecule RGBI values were calculated by considering

the projection into two groups of the atomic natural orbitals

belonging to all atoms in the interacting molecules. The

distribution of total molecule� � �molecule RGBI values (�) is
presented in Fig. 1(b) (only dimers with a single atom� � �atom
short contact are included in the plot). The RGBI values

obtained for interactions between groups of atoms are typi-

cally higher than those for localized atom� � �atom values (with

a few exceptions; see Section 3.3). This might be expected, as

there is more sharing and transfer of electrons from one group

to another, as shown in Tables 1 and 2. We observe that strong

HBs such as N—H� � �O, O—H� � �N and O—H� � �O are char-

acterized by the highest molecule� � �molecule bond-index

values, ranging from 0.42 to 1.42. Weak HBs such as C—H

� � �N and C—H� � �O show RGBI values ranging from 0.17 to

1.14. For XBs, the molecule� � �molecule bond-index values

range from 0.10 to 0.73. For YBs, the corresponding RGBI

range is 0.22–1.52. When the bond orders are averaged for

each class of interaction, a hierarchy of HB > XB > YB is

observed in terms of molecule� � �molecule bond indices, as was

the case with the atom� � �atom bond indices.

3.2. Visualization of Roby–Gould hybrid orbitals

As explained above, the Roby–Gould indices are

constructed as the sum of terms from individual covalent

bonding and antibonding orbitals, and ionic bonding and

antibonding orbitals. It is useful to examine ionic and covalent

orbitals separately, to see if they have any relevance to the

orbitals that are used in the theory of homonuclear diatomics.

It is straightforward to conceive a covalent bonding orbital (an

orbital with a maximum shared population in the interaction

region between atoms A� � �B) and a covalent antibonding

orbital (an orbital with a minimum shared population between

atoms A and B and a maximum population away from the

A� � �B interaction region).

The ionicity in an intermolecular interaction can be attrib-

uted to a putative charge transfer from atom A!B, resulting

in a favourable interaction between partially charged atoms

A(�+)� � �B(��). Hence, the ionic bonding orbitals correspond to

those orbitals representing a lower charge density around A

and an accumulated charge density around B. Similarly,

orbitals with an opposite charge-density distribution (accu-

mulated population around A and depletion around B)

represent ionic antibonding orbitals. This is demonstrated in a

representative example of Cl� � �N halogen bonding in the

crystal structure of CSD refcode CCACEN. Table 3 shows the

covalent and ionic Roby–Gould populations in the bonding

and antibonding modes for main three paired orbitals that are

involved in the Cl� � �N interaction of the CCACEN dimer. We

see that the shared population with � = 83� makes a greater

contribution to the covalent bond index than do the other

angles, while the transferred population with � = 89� makes a

greater contribution to the ionic bond index. Fig. 2 presents

the Roby–Gould hybrid orbitals for one of these three cova-

lent and ionic pairs with � = 83� as an example of halogen

bonding and antibonding orbitals for the Cl� � �N interaction.

3.3. Insights into the nature of interactions: breakdown of
bond index into ionic and covalent bond indices

One of the interesting questions about intermolecular

interactions is how ionic or covalent they are. We address this

in terms of the percentage ionicity and covalency from the

RGBI values. Fig. 3 shows the percentage of the covalent

RGBIs evaluated on the data set of 106 interactions (in 97

research papers

6 of 12 Khidhir Alhameedi et al. � Bond orders for intermolecular interactions IUCrJ (2018). 5

Figure 2
Roby–Gould orbitals used in the estimation of Cl� � �N atom� � �atom
bonds. (a) Covalent bonding, (b) covalent antibonding, (c) ionic bonding
and (d) ionic antibonding for the Cl� � �N interaction in the CCACEN
dimer, � = 83�.

Table 3
The covalent and ionic Roby–Gould populations for the three main
paired orbitals of bonding and antibonding modes for the Cl� � �N
interaction in the CCACEN dimer.

The angle (�) values for each pair are given. The covalent (c) and ionic (i)
parameters are also given for each pair of orbitals.

Covalent population Ionic population

Angle
� (�) Bonding

Anti-
bonding c Bonding

Anti-
bonding i

83 1.870 1.797 0.036 1.932 1.735 0.098
89 1.694 1.671 0.011 1.411 1.954 �0.271
89 1.694 1.670 0.011 1.410 1.954 �0.271
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unique molecular dimers) with all considered interaction

types.

For atom� � �atom bond indices, the average covalency

percentages (light-blue column) are estimated for 42 HBs, 31

XBs and 33 YBs. Based on these average values, it is clearly

seen that these intermolecular interactions are dominated by

ionicity, as the ionicity indices are consistently higher than the

covalency indices. The average %ionicity values observed for

different classes of interaction are 70% for HBs, 78% for XBs

and 62% for YBs. It must be cautioned that these averaged

percentage values need not be taken as typical of each inter-

action type, as the values of the interactions within a given

type vary over a wide range (as shown in Table S1 in the

supporting information, and Tables 1 and 2). The observation

that these interactions are more ionic than covalent in their

bond-order components supports the reported experimental

and computational studies which suggest their predominant

electrostatic nature, based on electrostatic potentials, experi-

mental deformation densities (Grabowski, 2011; Edwards et

al., 2017; Bui et al., 2009; Mani & Arunan, 2013) etc.

For molecule� � �molecule bond indices, these percentages

(dark-blue column) are averaged with data sets of 41, 31 and

25 dimers for HBs, XBs and YBs, respectively. We observe

that the covalent percentage is higher for molecule� � �mol-

molecule interactions than for atom� � �atom interactions, as

presented in Tables 1 and 2. It may be noted that the %ionicity

and %covalency values vary significantly for different mol-

ecular dimers of the same interaction type, as found in Tables 1

and 2, especially when the total bond orders are very small (i.e.

for very weak interactions). Hence, we recommend drawing

only qualitative conclusions from these trends. An important

insight is that there is a balance of both ionic and covalent

contributions in most of the intermolecular interactions.

Further, we analysed the values of the ionic and covalent

bond indices. As expected, the molecule� � �molecule covalent

indices are higher than the corresponding atom� � �atom
covalent indices in all 106 dimers. This is because the mol-

ecule� � �molecule indices account for the shared electron

population from all the atoms in a molecular dimer. However,

this is not the case with the ionic bond indices. The

atom� � �atom ionic bond indices are higher than corresponding

molecule� � �molecule indices for 34 out of 106 dimers. Out of

these 34 dimers, there are 15 dimers with HBs and four dimers

with YBs, for which the molecule� � �molecule ionic indices are

reduced to zero. This is due to the net cancellation of elec-

tronic transfer occurring in opposite directions.

A typical example of such a case is shown in Fig. 4, where a

symmetric carboxylic acid dimer forms two strong O—H� � �O
HBs which are related by inversion. This leads to the mutual

cancellation of effective charge transfer through these HBs

and results in a net molecule� � �molecule ionicity bond index

of zero. This is significant as it implies that, in such cases,

molecule� � �molecule bond indices are devoid of the ionicity

component and hence can be biased. Such reverse charge

transfer also leads to partial cancellation of the ionicity. This

may also be conceived as the contribution of ‘ionic anti-

bonding orbitals’ (as shown in Fig. 2). As a result, mol-

ecule� � �molecule ionic indices in 15 examples analysed in this

study are found to be lower than the corresponding

atom� � �atom values (see Table S2 in the supporting informa-

tion). In the five dimers shown in Fig. 5, such partial cancel-

lation of the ionicity leads to molecule� � �molecule total bond

indices lower than the corresponding atom� � �atom bond

indices.

These examples clearly demonstrate that, when we consider

certain aspects of interactions such as ionicity or charge

transfer, localized atom� � �atom considerations or localized

moiety–moiety estimates are indeed necessary, as opposed to

molecule� � �molecule estimates for the whole molecule.

3.4. Estimating charge transfer in hydrogen-bonding and
r-hole interactions via Hirshfeld atom partitioning

A widely accepted picture of intermolecular interactions

such as HBs, XBs and YBs is that of an n ! �* interaction,

where often the occupied nonbonding molecular orbital (or

NBMO) of the bond acceptor (A) is directed towards the �*
(D—X) antibonding molecular orbital. Hence, these inter-

actions may be associated with an electron transfer from bond

acceptor to bond donor (A ! X, or nucleophile to electro-

phile). To probe this, we have analysed the Hirshfeld charge
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Figure 3
Average covalency percentages for atom� � �atom bond indices (light blue)
and molecule� � �molecule bond indices (dark blue) for hydrogen, halogen
and chalcogen bonds. The number of interactions and molecular dimers
studied for each type are given in parentheses. (See Fig. S2 in the
supporting information for bond-order-weighted covalency percentages).

Figure 4
The reverse charge transfer and complete cancellation of mol-
ecule� � �molecule ionicity in a carboxylic acid dimer (SALIAC12) related
by inversion symmetry. The values of charge (electron) transfer along the
(O—H� � �O) hydrogen bonds are given, with their directions. Grey atoms
are C, red O and white H.
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for a data set of 194 systems (97 dimers and the corresponding

97 monomers). The change in Hirshfeld charges on the

acceptor and donor atoms from the monomer state to the

corresponding dimer state is estimated as the charge transfer

due to the intermolecular interaction. Hence, we calculate the

Hirshfeld charge transfer for acceptor and donor atoms as

follows

�qa ¼ qdimer
a � qmonomer

a ; ð12Þ

where �qa is the difference in Hirshfeld charge, and qmonomer
a

and qdimer
a refer to the Hirshfeld charge on the acceptor and

donor atoms for the monomer and dimer, respectively. The

charge transfer is evident from the�q values, which are in the

ranges 0.023–0.135 a.u. [a.u. = arbitrary unit?] for strong HBs,

0.004–0.046 a.u. for weak HBs, 0.001–0.035 a.u. for XBs and

0.001–0.043 a.u. for YBs. These values of the charge transfer

compare well with those previously reported for such inter-

actions (Legon, 2010; Řezáč & Lande, 2017).

The full set of �q results for donor and acceptor atoms is

presented in Table S3 of the supporting information. We can

clearly see that the charges on acceptor atoms are increased

after forming an interaction, with just a few exceptional cases

(one out of 30 in XBs and five out of 33 in YBs). In contrast,

the charges on donor atoms are decreased after forming a

bonding interaction, and the exceptions are two out of 42 in

HBs, eight out of 30 in XBs and 13 out of 33 in YBs. This

means that, as a general trend, there is electron transfer from

A ! X, i.e. from bond acceptor to donor. These results

substantiate the n ! �* charge-transfer picture for HBs, XBs

and YBs.

Fig. 6 shows the correlations of the covalent, ionic (absolute

values) and total atom� � �atom bond indices with the changes

in Hirshfeld charge (�qa) for HBs, XBs and YBs. For HBs

(Fig. 6a), we observe a correlation between the bond indices

and charge transfer in terms of a change in the Hirshfeld

charge. This demonstrates the role of charge transfer in HBs,

although a clear correlation between charge transfer and ionic

bond order is not observed. In particular, for halogen- and

chalcogen-bonding interactions (Fig. 6b), we do not find any

correlation between RGBI values and �q values. The reason

for this may be that, in many of these molecular dimers, the

atoms involved in the interactions (atoms X and A in a D—

X� � �A interaction) possess significant partial opposite charges,

even in the monomer state (as given in Tables S3–S5), and the

charge transfer �q may be only a component of the inter-

action. Another possible origin of this discrepancy could be

the difference in the definitions of atoms used in the calcula-

tion of Hirshfeld charge and in the RGBI scheme for transfer

population (in the calculation of ionic bond order).

3.5. Distance and directional dependence of bond indices

Fig. 7 shows the correlations of the covalent, ionic (absolute

values) and total atom� � �atom bond indices with the inter-

action distances (d) and the interpenetration of the van der

Waals (vdW) spheres [the difference between the interaction
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Figure 6
Atom� � �atom RGBIs, including covalent, ionic and total, versus the
difference in Hirshfeld charge of the acceptor atoms (absolute values in
a.u.) between dimers and monomers (�q) for (a) hydrogen bonds, and
(b) halogen- and chalcogen-bonding interactions. For ionic bond indices,
we plot the absolute values.

Figure 5
The molecular structures of the five dimers that exhibit atom� � �atom
bond indices (blue) higher than their molecule� � �molecule bond indices
(red). The CSD refcodes and interaction type are denoted below each
dimer. Grey atoms are C, green Cl, blue N, red O, gold Br and yellow S.
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distance and the sum of the vdW radii (�d) for HBs, XBs and

YBs].

For the HBs (Fig. 7a), we observe a rough distance

dependence with a correlation coefficient R2 = 0.91 for the

total bond indices. A similar trend in the opposite direction is

observed for �d.

Such a trend is not found for the halogen and chalcogen

interactions (Fig. 7b). Awide distribution of bond indices for a

small window of interaction distances suggests a higher

directional dependence of XBs and YBs compared with the

distance dependence.

An intriguing example where atom� � �atom RGBIs vary

significantly with the difference in interaction angles (D—

X� � �A) despite the very similar interaction distances (d) is

presented in Fig. 8. We see that the RGBIs of the Cl� � �N
interaction for the PCLPYR dimer and for XIZPON are 0.28

(C—Cl� � �N = 180.00�, d = 3.014 Å) and 0.05 (C—Cl� � �N =

146.35�, d = 3.090 Å), respectively. This further confirms the

higher directionality often associated with �-hole interactions
such as XBs and YBs compared with HBs. We also compared

the atoms in molecules (AIM) topological properties of

electron density (�) and its Laplacian (r2�) at the bond-

critical points (bcps) of these two interacting dimers. It is to be

noted that the topological parameters for the Cl� � �N inter-

action in the PCLPYR dimer and in XIZPON are very similar,

despite the remarkable difference in their XB angle (C—

Cl� � �N). This suggests that bond-order estimations will be

more sensitive to directional variations in intermolecular

interactions than will electron-density topological parameters.

In order to verify this trend and the effect of interaction

angles on bond orders, we need to have examples of dimers

that show very similar interaction distances and very different

angles. Unfortunately, we do not have such examples in the

series of compounds studied in this paper, apart from the two

examples presented in Figs. 8(a) and 8(b). Hence, we gener-

ated hypothetical molecular dimers, varying the interaction

angles (D—X� � �A), for the linear molecules NC—CC—Br

and NC—CC—Cl (CSD refcodes BCACEN and CCACEN),

which exhibit Br� � �N and Cl� � �N interactions, keeping the

Br� � �N and Cl� � �N distances fixed. The D—X� � �A angle is

significant, as a nearly 180� angle is directly linked to the
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Figure 7
Atom� � �atom RGBIs versus distance and the van der Waals interpenetration (�d) for (a) hydrogen bonds (HBs), and (b) halogen- and chalcogen-
bonding interactions (XBs and YBs, respectively). For ionic bond indices, we plot the absolute values. [What about panels (c) and (d)?]

Figure 8
Atom� � �atom RGBIs for (a) the PCLPYR dimer and (b) the XIZPON
dimer that exhibit very similar interaction distances and different
interaction angles. The interaction regions are marked with their RGBIs
and the AIM topological parameters evaluated at the bcps. (c) The
deformation electron-density map (0.005 a.u. surface) plotted for the
linear dimer shows the effective interaction between the charge-depleted
region of Br and the charge-concentrated region of N (lone-pair density).
(d) The linear /C—Br� � �N experimental geometry in BCACEN (�x =
177.2�). (e) The perpendicular /C—Br� � �N hypothetical geometry in
BCACEN (�x = 90�). Grey atoms are C, green Cl, blue N, gold Br and
yellow S.
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effective n ! �* interaction. Starting from the linear

geometries in the crystal structures of BCACEN and

CCACEN, we varied the D—X� � �A angle up to 90� (Figs. 8d
and 8e). It may be noted that the most effective n ! �*
interaction geometry also corresponds to the interaction

between the charge-depleted (CD) region on the halogen

atom and the charge-concentrated (CC) region on the nitro-

gen atom (as seen in Fig. 8c). Hence, a D—X� � �A angle of 90�

corresponds to a lone-pair–lone-pair repulsion and can be

destabilizing. These trends are clearly observed when we

evaluate the interaction energies of these hypothetical dimers

evaluated at the M062x/Def2TZVP level (Table 4). Interest-

ingly, the decrease in stability of these dimers from linear to

perpendicular geometries reflects well in their RGBI values,

and notably in the ionic component of the RGBIs. However,

the AIM topological parameters show the opposite trend

(Table 4). These observations further verify that RGBI values

are more sensitive to the directionality of intermolecular

interactions than the AIM parameters.

3.6. Correlation between bond indices and intermolecular
interaction energies

As interaction energy is a molecule� � �molecule descriptor,

we restrict this discussion to the correlations between mol-

ecule� � �molecule RGBI and intermolecular interaction ener-

gies calculated at the M062x/def2TZVP level. The full set of

results is presented in Tables S4–S6 of the supporting infor-

mation. Since the ionic indices can be affected by a reverse

charge-transfer contribution as detailed in a previous section

(see Section 3.3), here we discuss the correlations between

covalent molecule� � �molecule bond indices. A rough corre-

lation (Fig. 9) is observed between covalent bond indices and

interaction energies, with molecular dimers linked by HBs

clearly clustered away from XBs and YBs. This suggests that

RGBI values can indeed be used as indicators of interaction

strength.

3.7. Testing the conservation of bond orders in the
interaction region

Finally, we set out to test the idea of bond-order conser-

vation in the interaction region, as proposed recently by Shahi

& Arunan (2014). They showed that the formation of a D—

X� � �A intermolecular interaction results in a reduction in the

bond order of the D—X covalent bond and this reduction is

comparable in magnitude to the bond order of the X� � �A
interaction. This proposition refers to the weakening of a

chemical bond on the formation of an intermolecular inter-

action. Recently, Thomas and co-workers showed the weak-

ening of the Se—N bond in the antioxidant ebselen caused by

intermolecular Se� � �O chalcogen bonding, which could be

related to the bond-cleavage mechanism in its drug action

(Thomas et al., 2015).

We tested bond-order conservation using atom� � �atom
RGBIs in a selected set of 15 dimers including hydrogen,

halogen and chalcogen interactions. These dimers were

specifically selected from the 97 dimers studied here based on

their small molecular size, as the calculations involved RGBI

estimations on optimized geometries of both monomers and

dimers. Further, the change in the total RGBI values of the
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Table 4
The angle dependence of RGBI values, interaction energies and AIM topological parameters for Cl� � �N and Br� � �N halogen-bonded dimers with
hypothetical D—X� � �A angle geometries.

X� � �A
C—X� � �N
angle �x (

�)
Covalent
index (c)

Ionic
index (i)

Total
RGBI (�)

Interaction energy
(kcal mol�1)

�bcp
(e Å�3)

r2�bcp
(e Å�5)

Cl� � �N
CCACEN 178.30 0.06 0.44 0.45 �2.99 0.074 1.148

155.00 0.05 0.44 0.44 �2.21 0.078 1.177
135.00 0.04 0.43 0.43 �0.91 0.085 1.229
115.00 0.03 0.41 0.42 0.08 0.090 1.275
90.00 0.03 0.40 0.40 �0.06 0.092 1.291

Br� � �N
BCACEN 177.20 0.09 0.40 0.41 �3.88 0.090 1.301

155.00 0.08 0.40 0.40 �2.55 0.096 1.323
135.00 0.06 0.38 0.39 �0.51 0.105 1.377
115.00 0.04 0.37 0.37 �0.51 0.111 1.427
90.00 0.04 0.35 0.36 1.39 0.113 1.437

Figure 9
Molecule� � �molecule covalent RGBIs versus intermolecular interaction
energies (in kcal mol�1 calculated at the M062x/def2TZVP level;
1 kcal mol�1 = 4.184 kJ mol�1) for hydrogen bonds (HBs), halogen-
bonding interactions (XBs) and chalcogen-bonding interactions (YBs).
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D—X bonds from monomer molecule to dimer (�D—X)

were compared with the RGBIs of the X� � �A interactions.

Although we found an interesting trend of D—X bond-order

reduction (in terms of RGBI values) upon the formation of

interactions, quantitative trends between RGBI (�D—X) and

RGBI (X� � �A) do not show bond-order conservation. The full

set of results is presented in Table S9 of the supporting

information. A correlation coefficient R2 = 0.87 with a slope of

0.72 for these 15 dimers shows that ‘bond-order conservation’

is not very well obeyed. Nevertheless, it shows that an inter-

action formed is a bond weakened. Our observations further

underscore that characteristic trends in localized atom� � �atom
properties such as bond order are associated with inter-

molecular interactions in crystals.

An example where the RGBI of aD—X bond reduces upon

HB formation is shown in Fig. 10(b) for the dimer in the

crystal structure FORAMO01. We can see that the RGBI in

the bond donor (O—H) decreases from 0.94 in the monomer

to 0.78 in the dimer. This reduction compares well with the

bond order of the interaction formed (O—H� � �N) in the

dimer.

4. Conclusions

In summary, the RGBI values estimated in this study for the

major classes of noncovalent interaction place them on a scale

representing their relative strengths, in conjunction with a

chemist’s notion of bonds. These bond orders may be superior

to the electron-density topological parameters usually eval-

uated at bond-critical points, as they account for both electron

sharing and charge transfer separately. Moreover, we have

shown that the trends in angular dependence of the inter-

action strengths are better reflected in their RGBI values than

in the AIM topological parameters. We establish a clear trend

of electron transfer from bond acceptor to donor (i.e. A!X—

D for HBs, XBs and YBs). Estimates of atom� � �atom and

molecule� � �molecule bond orders and their ionic and covalent

components clearly establish the occurrence of reverse charge

transfer, either completely (with inversion symmetry between

the interacting molecules) or partially (via ionic antibonding

orbitals), in a series of examples. These results emphasize the

significance of considering localized atom� � �atom interactions

along with the holistic molecule� � �molecule picture for

understanding supramolecular assembly in crystals. Further,

the strong directionality associated with �-hole interactions

such as halogen and chalcogen bonds and the weakening of

D—X covalent bonds upon the formation of such interactions

are clearly evident from our RGBI estimates. This study also

opens up the possibility of deriving RGBI values from

quantum crystallographic X-ray wavefunctions (or ‘experi-

mental wavefunctions’). Our future efforts will focus on the

accurate determination of experimental bond orders, which

will provide insight into intermolecular interactions and bonds

in crystalline solids.
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