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A B S T R A C T  

The ability to accurately calculate relative energies of fullerenes is important in many areas of 
computational nanotechnology. Due to the large size of fullerenes, their relative energies cannot 
normally be calculated by means of high-level ab initio procedures, and therefore density 
functional theory (DFT) represents a cost-effective alternative. In an extensive benchmark study, 
we calculate the electronic energies of eight C60 isomers by means of the high-level G4(MP2) 
composite procedure. G4(MP2) isomerization energies span a wide range between 307.5–1074.0 
kJ mol–1. We use this benchmark data to assess the performance of DFT, double-hybrid DFT 
(DHDFT), and MP2-based ab initio methods. Surprisingly, functionals from the second and third 
rungs of Jacob’s Ladder (i.e., GGA and meta-GGA functionals) significantly and systematically 
outperform hybrid and hybrid-meta-GGA functionals, which occupy higher rungs of Jacob’s 
Ladder. In addition, DHDFT functionals do not offer a substantial improvement over meta-GGA 
functionals, with respect to isomerization energies. Overall, the best performing functionals with 
mean absolute deviations (MADs) below 15.0 kJ mol–1 are (MADs given in parenthesis) the 
GGA N12 (14.7); meta-GGAs M06-L (10.6), M11-L (10.8), MN15-L (11.9), and TPSS-D3BJ 
(12.8); and the DHDFT functionals B2T-PLYP (9.3), mPW2-PLYP (9.8), B2K-PLYP (12.1), and 
B2GP-PLYP (12.3 kJ mol–1). In light of these results, we recommend the use of meta-GGA 
functionals for the calculation of fullerene isomerization energies. Finally, we show that inclusion 
of very small percentages of exact Hartree–Fock exchange (3–5%) slightly improves the 
performance of the GGA and meta-GGA functionals. However, their performance rapidly 
deteriorates with the inclusion of larger percentages of exact Hartree–Fock exchange.  
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1. Introduction 

Isomerization energies are fundamental thermochemical quantities that are required for 

comparing the thermodynamic stability of isomers. Fullerene isomerization energies are of 

particular importance for prediction of their thermodynamic stability (and assessment of the 

kinetic stability).1,2,3,4,5,6 Over the past two decades density functional theory (DFT) has become 

the most applied quantum chemical method for medium-sized chemical systems due to its 

attractive accuracy-to-computational cost ratio (medium-sized systems here refer to molecules for 

which high-level ab initio methods cannot be routinely applied, i.e., with over 50 non-hydrogen 

atoms).  The approximations for the exchange-correlation functional can be classified according 

to their rung on Perdew’s ‘Jacob’s Ladder’: 7  (1) the local density approximation; (2) pure 

generalized gradient approximation (GGA) employing both the local density and the reduced 

density gradient; (3) the meta-GGAs which additionally employ the kinetic energy density; (4) 

the hybrid-GGAs and hybrid-meta-GGAs which in addition involve the occupied orbitals; and (5) 

the double-hybrid functionals which additionally employ the virtual orbitals.  

Numerous benchmark studies have shown that the performance of DFT functionals 

improves along the rungs of Jacob’s Ladder,8,9,10,11,12,13,14,15,16,17,18,19,20  and this is also true for 

isomerization energies of carbon rich molecules.17,18,19,20 This has been found to be the case for (i) 

isomerization energies in polycyclic aromatic hydrocarbons,17  (ii) conjugated ➝ non-conjugated 

isomerizations in dienes,18 (iii) C8H8 structural isomerizations,19 and (iv) linear–cyclic 

isomerization energies in small carbon clusters.20 Given the fundamental importance of Jacob’s 

Ladder in DFT, it is important to identify cases for which this hierarchy does not hold, and if 

possible, arrive at guidelines with regard to when this might occur. Identifying such cases is 

important for both users and developers of DFT.  

In the present work, we introduce a representative database of high-level C60 

isomerization energies (to be known as the iso-C60 database). The isomers in the iso-C60 
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database are shown in Figure 1. The database covers a broad spectrum of structures with relative 

energies ranging between 307.5–1074.0 kJ mol–1, relative to the most stable Buckminsterfullerene 

isomer. Reference isomerization energies at the CCSD(T)/CBS level (i.e., coupled cluster energy 

with single, double, and quasiperturbative triple excitations at the complete basis-set limit) are 

approximated by means of the high-level G4(MP2) composite procedure. These benchmark 

values allow us to assess the performance of more approximate DFT and MP2-based ab initio 

procedures for the isomerization energies. Specifically, we examine the performance of a variety 

of contemporary DFT procedures across all rungs of Jacob’s Ladder. One important finding is 

that inclusion of even small amounts of exact Hartree–Fock exchange in the functional form 

results in a significant deterioration in performance of GGA and meta-GGA functionals. In 

addition, the high-level double-hybrid functionals do not offer a noticeable improvement over the 

computationally economical meta-GGA functionals. Therefore, the performance of DFT methods 

does not exhibit the normal improvement along the rungs of Jacob’s Ladder with respect to C60 

isomerization energies. 
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Figure 1. Optimized structures of the C60 isomers in the iso-C60 database. The point-group 
symmetry and the relative G4(MP2) isomerization energy in kJ mol–1 are given in parenthesis.  
 

2. Computational Methods 

In order to obtain reliable reference relative energies for the C60 isomers, calculations have 

been carried out using the high-level, ab initio G4(MP2) method, 21,22 which provides a cost-

effective approach for approximating the CCSD(T)/CBS energy.23 In particular, G4(MP2) theory 

uses an additivity-based formula of the form: 

 

E[G4(MP2)] = E[CCSD(T)/6-31G(d)] + ∆E(MP2) + ∆E(HF)   (1) 
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where the basis-set-correction terms are given by 

 

∆E(MP2) = E[MP2/G3MP2LargeXP] – E[MP2/6-31G(d)]     (2) 

 

∆E(HF) = E[HF/{T,Q}] – E[HF/G3LargeXP]     (3) 

 

Here, HF/{T,Q} indicates extrapolation of the HF energy from truncated versions of the aug-cc-

pVTZ and aug-cc-pVQZ basis sets.  

It should be pointed out that ideally, we should be using a higher-level composite ab initio 

method such as W1-F12 which approximates the CCSD(T) energy closer to the basis set limit for 

calculating the C60 isomerization energies;23,24 however, these calculations proved beyond our 

computational resources. Nevertheless, the G4(MP2) isomerization energies should be of 

sufficient accuracy for the purpose of benchmarking DFT and MP2-based procedures due to a 

large degree of systematic error cancelation between reactants and products.16,17,25,26 For example, 

for isomerization energies of ortho, meta, and para carboranes (C2B10H12) the deviations between 

G4(MP2) and W1-F12 amount to less than 1 kJ mol–1.27 

The DFT exchange-correlation functionals considered in the present study (ordered by 

their rung on Jacob’s Ladder)7 are given in Table 1. Empirical D3 dispersion corrections28,29,30 are 

included in some cases using the finite Becke–Johnson31 and zero-damping potentials (denoted by 

the suffix -D3BJ and -D3, respectively). We note that the suffix -D in B97-D and wB97X-D 

indicates the original dispersion correction.  
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Table 1. DFT exchange-correlation functionals considered in the present work.  
Typea Functionals 
GGA BLYP,32,33 B97-D,34 HCTH407,35 PBE,36  

BP86,32,37 BPW91,33,38 SOGGA11,39 N1240 
MGGA M06-L,41 TPSS,42 t-HCTH,43 VSXC,44  

BB95,45 M11-L,46 MN12-L,47 MN15-L48 
HGGA BH&HLYP,49 B3LYP,32,50,51 B3P86,50,37  

B3PW91,50,38 PBE0,52 B97-1,53 B98,54  
X3LYP,55 SOGGA11-X,56 APF,57  
APFD,57 mPW1PW91,58,38 mPW1LYP,58,32  
mPW1PBE,58,36 HSE03,59 HSE0660 

HMGGA M05,61 M05-2X,62 M06,63 M06-2X,63  
M06-HF,63 M08HX,64 MN15,48 BMK,65  
B1B95,32,45 TPSSh,66 t-HCTHh,43 PW6B9567 

DH B2-PLYP,68 mPW2-PLYP,69 PBE0DH,70  
PBEQIDH,71 B2GP-PLYP,72 B2K-PLYP, 73  
B2T-PLYP,73 DSD-BLYP,74 DSD-PBEP8675,76 

RS wB97,77 wB97X,77 wB97X-D,78 M11,79  
N12SX,80 MN12SX,80 CAM-B3LYP,81  
LC-wHPBE,82 LC-wPBE,83 LC-BLYP,  
LC-PBE, LC-BP86, and LC-BPW9184 

aGGA = generalized gradient approximation, HGGA = hybrid-GGA, MGGA = meta-GGA, 
HMGGA = hybrid-meta-GGA, DH = double hybrid, RS = range-separated.  
 

In addition, the performance of approximate ab initio methods is also assessed. We 

consider the performance of the following standard ab initio methods: MP2, SCS-MP2,85 SOS-

MP2,86 SCS(MI)-MP2,87 SCSN-MP2,88 SCS-MP2-vdW,89 S2-MP2.90 All the DFT, DHDFT, and 

MP2 calculations were carried out in conjunction with the Def2-TZVPP basis set. 91  The 

geometries of all structures have been obtained at the PBE-D3/Def2-TZVPP level of theory and 

taken from reference 1. All ab initio calculations involved in the G4(MP2) procedure were 

calculated using Molpro 2016.92,93 All DFT and DHDFT calculations were performed using the 

Gaussian 16 program suite.94  
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3. Results and Discussion  

3.1. Overview of the benchmark isomerization energies in the iso-C60 database. The isomers 

in the iso-C60 database are shown in Figure 1 along with the G4(MP2) isomerization energies 

(∆Eiso) relative to the well-known Ih symmetry buckminsterfullerene isomer. This highly 

symmetric isomer involves 12 pentagons completely surrounded by hexagons, and is the only 

isomer of C60 to satisfy the isolated pentagon rule. The next two isomers (2 and 3) are structurally 

similar, e.g., they both involve six fulvalene units surrounded by hexagons, and lie close in 

energy to one another (namely, at the G4(MP2) level ∆Eiso = 307.5 and 311.4 kJ mol–1, 

respectively). The next two isomers (4 and 5) are energetically similar ellipsoids with ∆Eiso = 

558.4 and 562.5 kJ mol–1, respectively. Similarly to isomer 1, isomers 6 and 7 involve 12 

pentagons, however, since these pentagons are not completely surrounded by hexagons these 

isomers are not spherical and are highly energetic with ∆Eiso = 648.5 and 695.2 kJ mol–1, 

respectively. Isomer 8, which may be essentially described as a capped nanotube, is the highest-

energy C60 isomer with ∆Eiso = 1074.0 kJ mol–1. We note that ideally it would have been good to 

include additional C60 isomers in the iso-C60 database; however, due to the high computational 

cost associated with the CCSD(T)/6-31G(d) calculations the present study can only consider 

highly symmetric isomers, and even these calculations strained our computational resources to 

the limit. For example, the CCSD(T)/6-31G(d) calculation for isomer 2 (in D2d symmetry) ran for 

31 days on 4 Intel Xeon E5-2670v2 cores (at 3.1 GHz) with 256 GB of RAM and 2 TB of solid-

state disk.   

 

3.2. Relative errors for the DFT and ab initio procedures for the isomerization energies in 

the iso-C60 database. As shown in Section 3.1, the isomerization energies in the iso-C60 

database spread over a wide range, namely between 307.5 and 1074.0 kJ mol–1. It is therefore 

instructive to begin by examining the relative errors in the isomerization energies. Table S1 of the 
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Supporting Information lists the relative errors for all the methods that were considered in the 

present work. Inspection of these results reveals that for 67 of the 115 methods considered here 

the maximum relative errors exceed 10%. Table 2 summarizes the relative errors for the 

remaining 48 methods for which the maximum relative error is smaller than 10%.  

 

Table 2. Minimum and maximum relative errors for DFT and SCS-MP2 isomerization energies 
of fullerene isomers in the iso-C60 database. The isomerization energy for which the minimum or 
maximum error is obtained is given in parenthesis. Only functionals with maximum relative 
errors ≤ 10.0% are listed here (for the complete set see Table S1 of the Supporting Information). 
Functionals with maximum relative errors ≤ 5.0% are listed in green font, functionals with 
minimum relative errors ≥ 5.0% are listed in red font.  

Typea Functional Minb Maxb 
GGA N12 0.2 (3) 4.6 (5) 
 BLYP-D3BJ 0.6 (3) 5.1 (5) 
 HCTH407 0.3 (8) 5.4 (5) 
 PBE-D3BJ 1.2 (3) 6.1 (5) 
 BLYP 0.4 (8) 6.2 (5) 
 BPW91 0.7 (8) 6.2 (5) 
 BLYP-D3 1.8 (8) 6.3 (5) 
 BP86 1.0 (8) 6.5 (5) 
 PBE-D3 1.8 (3) 6.6 (5) 
 PBE 1.5 (8) 6.7 (5) 
 B97-D 2.3 (8) 7.1 (5) 
 SOGGA11 4.7 (3) 10.0 (7) 
MGGA TPSS-D3BJ 0.6 (3) 3.9 (5) 
 M06-L 0.2 (7) 4.1 (8) 
 M11-L 0.0 (5) 4.2 (8) 
 MN15-L 0.3 (7) 4.5 (3) 
 M06L-D3 0.1 (7) 4.6 (8) 
 TPSS 0.4 (3) 4.6 (5) 
 TPSS-D3 0.3 (3) 4.6 (5) 
 VSXC 0.3 (3) 4.6 (8) 
 t-HCTH 0.3 (3) 4.9 (5) 
 BB95 3.5 (3) 8.4 (5) 
 MN12-L 4.0 (5) 9.1 (8) 
HGGA B3PW91-D3BJ 6.5 (6) 8.5 (8) 
 B3PW91-D3 5.5 (6) 8.7 (8) 
 APF-D 5.9 (2) 9.2 (8) 
 B3LYP-D3BJ 6.6 (6) 9.8 (8) 
HMGGA TPSSh-D3 1.4 (5) 5.1 (8) 
 TPSSh-D3BJ 2.8 (5) 5.4 (3) 
 TPSSh 1.4 (5) 6.5 (8) 
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 t-HCTHh 2.6 (6) 7.8 (8) 
 M05-D3 5.0 (2) 8.5 (8) 
 M05 5.0 (2) 9.0 (8) 
 M06 4.9 (2) 9.2 (8) 
 M06-D3 5.1 (2) 9.2 (8) 
DH B2-PLYP-D3BJ 0.7 (4) 3.9 (8) 
 B2-PLYP 0.9 (4) 4.0 (5) 
 B2-PLYP-D3 1.2 (4) 4.1 (5) 
 B2T-PLYP 0.3 (6) 4.6 (3) 
 B2GP-PLYP 0.3 (4) 4.7 (3) 
 B2GP-PLYP-D3 0.2 (4) 4.7 (3) 
 mPW2-PLYP 0.1 (5) 5.2 (3) 
 B2GP-PLYP-D3BJ 0.4 (6) 5.2 (3) 
 B2K-PLYP 0.1 (6) 5.5 (3) 
 DSD-BLYP 1.8 (4) 6.7 (8) 
 DSD-PBEP86 0.8 (4) 7.0 (8) 
 PBEQI-DH 2.1 (8) 8.0 (3) 
Ab initio SCS(MI)-MP2 0.9 (6) 9.1 (3) 
 SCS-MP2opt 0.4 (7) 9.9 (3) 

aFootnote a to Table 1 applies here. bThe isomerization energy for which the minimum and 
maximum error is obtained is given in parenthesis (see Figure 1). 

 

Remarkably, with no exception all of the GGA and meta-GGA functions result in 

maximum relative errors smaller than 10%. Even more remarkably, for nearly all of the 

considered MGGA functionals (i.e., 9 out of 11 functionals) the maximum relative errors are 

below 5% (Table 2).  

For the GGAs we obtain maximum relative errors ranging between 4.6% (N12) and 10% 

(SOGGA11). Where in all cases but one the maximum relative error is obtained for the 1 à 5 

isomerization. It is interesting to note that GGA methods systematically struggle with this 

isomerization reaction, rather than with isomerization reactions which are associated with a larger 

isomerization energy (Figure 1). This point is important since for functionals from higher rungs 

of Jacob’s Ladder the maximum relative error is usually obtained for the 1 à 8 isomerization. Of 

the GGA functionals, N12 shows the best performance with a minimum relative error of 0.2% 

(for the 1 à 3 isomerization) and a maximum relative error of 4.6% (for the 1 à 5 
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isomerization). All the other GGA functionals result in maximum relative errors larger than 

5.0%.  

Inclusion of the kinetic energy density in the meta-GGA procedures significantly 

improves the performance. For example, nine out of the eleven considered MGGAs result in 

maximum relative errors below 5.0%. Particularly good performance, with maximum relative 

errors of about 4%, is obtained for (maximum relative errors are given in parenthesis): TPSS-

D3BJ (3.9%), M06-L (4.1%), and M11-L (4.2%).  

Inclusion of exact exchange (EXX) in the HGGA functionals, on the other hand, results in 

significant deterioration in performance. This is illustrated by the fact that, of the 26 considered 

HGGA functionals considered here, only four result in maximum relative errors smaller than 

10%, namely B3LYP-D3BJ (9.8%), APFD (9.2%), B3PW91-D3 (8.7%), and B3PW91-D3BJ 

(8.5%). However, in all these cases the minimum relative errors are larger than 5%. Thus, it is 

evident that inclusion of exact HF exchange results in a significant deterioration in performance 

across the board (see Section 3.4 for further details).  

Overall, the hybrid-meta-GGAs also result in poor performance relative to the GGAs and 

meta-GGAs. For example, eight of the 25 considered HMGGA functionals result in maximum 

relative errors smaller than 10%, and none of these result in minimum relative errors smaller than 

5%. The best performing HMGGA is TPSSh, with maximum relative errors of 5.1% (TPSSh-D3) 

and 5.4% (TPSSh-D3BJ). 

Particularly large maximum relative errors of about 25–40% are obtained for the 

considered range separated (RS) functionals, with the exception of N12SX and MN12SX (Table 

S1 of the Supporting Information). The best performing RS functionals are (maximum relative 

errors are given in parenthesis): N12SX (11.2%), MN12SX (11.2%), and CAM-B3LYP-D3BJ 

(23.6%). We note that the minimum relative errors significantly exceed 5% in all cases (Table 

S1).  
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The DHDFT functionals are the only functionals above the third rung of Jacob’s Ladder 

that achieve good performance. However, it is important to note that they do not offer an 

improvement over the MGGA functionals. The best performing DH functional is B2-PLYP-

D3BJ with a maximum relative error of 3.9%. This performance is similar to that of the MGGA 

functional TPSS-D3BJ (Table 2). Of the 13 DH functionals, only one method (PBE0-DH) attains 

a maximum relative error above 10%. 

Finally, we note that of the considered HF- and MP2-based methods, only SCS(MI)-MP2 

attains a maximum relative error below the 10% threshold. The other methods result in maximum 

relative errors ranging between 15.2% (SOS-MP2) and 55.9% (HF-D3BJ). 

 

3.3. Absolute errors for the DFT and ab initio procedures for the isomerization energies in 

the iso-C60 database. The relative errors discussed in Section 3.2 indicate that the GGA, meta-

GGA, and DHDFT procedures significantly outperform hybrid and hybrid-meta GGA methods. 

In this section we will examine the statistical analysis of the absolute errors. Figure 2 gives an 

overview of the root-mean-square deviations (RMSDs) for the 104 DFT methods that were 

considered in this work. Inspection of this figure reveals that the hybrid-GGAs, hybrid-meta-

GGAs, and range separated functionals result in very poor performance. With the exception of 

TPSSh and t-HCTHh, the RMSDs for these functionals range between ~50 and well over 100 kJ 

mol–1. In contrast, nearly all of the GGA and meta-GGA functionals result in RMSDs of ~25 kJ 

mol–1. 
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Figure 2. Root-mean-square deviations (RMSDs) for all of the DFT procedures over the 
isomerization energies in the iso-C60 database relative to G4(MP2) reference values (in kJ mol–

1). The average RMSD across all functionals from each rung of Jacob’s Ladder is shown in red. 
See Table 2 (and Table S2 of the Supporting Information) for the specific RMSD for each 
functional.  
 

Table 3 gives an overview of the performance of the DFT functionals with RMSDs < 50.0 kJ 

mol–1. Table S2 of the Supporting Information gives an overview of the performance for all the 

methods that were considered in the present work. The second-order GGA functional SOGGA11 

is the only GGA method with and RMSD larger than 50.0 kJ mol–1 (namely, 52.6 kJ mol–1). The 

rest of the GGAs show fairly good performance with RMSDs ranging between 17.5 (N12) and 

31.8 (B97-D) kJ mol–1. All the GGAs tend to systematically underestimate the isomerization 

energies. The best performing GGAs are N12 and HCTH407 with RMSDs of 17.5 and 20.3 6 kJ 

mol–1, respectively. 

 

Table 3. Statistical analysis for the performance of DFT, DHDFT, and ab initio procedures for 
the isomerization energies in the iso-C60 database (in kJ mol–1). The G4(MP2) reference values 
are given in Figure 1. Only functionals with RMSDs < 50 kJ mol–1 are listed, see Table S2 of the 
Supporting Information for the entire set of functionals.  
Typea Method RMSDb MADb MSDb LNDb,c LPDb,c 
GGA N12 17.5 14.7 –11.6 –26.3 (7) 10.1 (8) 
 HCTH407 20.3 16.4 –15.6 –31.4 (7) 2.8 (8) 
 BLYP-D3BJ 21.8 19.2 –19.2 –30.1 (7) N/A 
 BLYP 24.3 20.9 –19.6 –35.2 (7) 4.3 (8) 
 BPW91 24.6 21.1 –21.1 –36.7 (7) N/A 
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 BP86 26.6 23.4 –23.4 –39.4 (7) N/A 
 BLYP-D3 26.7 24.1 –24.1 –37.9 (7) N/A 
 PBE-D3BJ 27.0 24.2 –24.2 –38.2 (7) N/A 
 PBE 27.5 24.5 –24.5 –40.7 (7) N/A 
 PBE-D3 29.0 26.2 –26.2 –41.6 (7) N/A 
 B97-D 31.8 29.1 –29.1 –45.6 (7) N/A 
MGGA TPSS-D3BJ 15.3 12.8 –12.3 –23.2 (7) 1.8 (3) 
 M06-L 17.7 10.6 8.7 –5.3 (5) 44.4 (8) 
 TPSS 17.9 15.4 –12.3 –26.2 (7) 11.1 (8) 
 M11-L 18.1 10.8 10.7 –0.3 (5) 45.0 (8) 
 TPSS-D3 18.3 15.1 –15.1 –27.8 (7) N/A 
 t-HCTH 18.5 15.9 –11.7 –27.3 (5) 14.6 (8) 
 MN15-L 18.8 11.9 11.9 N/A 46.4 (8) 
 M06-L-D3 19.4 11.4 9.9 –4.8 (5) 49.0 (8) 
 VSXC 26.6 22.1 –22.1 –49.2 (8) N/A 
 BB95 38.3 35.3 –35.3 –52.8 (7) N/A 
 MN12-L 44.2 35.9 35.9 N/A 98.1 (8) 
HGGA B3PW91-D3 45.6 39.3 39.3 N/A 92.9 (8) 
 B3PW91-D3BJ 48.5 43.7 43.7 N/A 90.9 (8) 
 APF-D 49.0 42.1 42.1 N/A 99.2 (8) 
HMGGA TPSSh-D3 22.5 16.0 16.0 N/A 54.4 (8) 
 TPSSh-D3BJ 26.3 22.9 22.9 N/A 54.1 (8) 
 TPSSh 28.0 18.9 18.9 N/A 69.3 (8) 
 t-HCTHh 35.0 25.2 25.2 N/A 84.1 (8) 
 M05-D3 44.9 38.3 38.3 N/A 91.8 (8) 
 M05 46.4 39.1 39.1 N/A 96.2 (8) 
 M06 48.1 40.4 40.4 N/A 99.2 (8) 
 M06-D3 48.4 40.9 40.9 N/A 99.3 (8) 
DH B2T-PLYP 10.6 9.3 –1.1 –16.5 (8) 14.3 (3) 
 mPW2-PLYP 10.9 9.8 9.7 –0.5 (5) 16.2 (3) 
 B2GP-PLYP 14.8 12.3 –4.5 –29.2 (8) 14.7 (3) 
 B2K-PLYP 15.3 12.1 –1.8 –30.8 (8) 17.2 (3) 
 B2GP-PLYP-D3 16.4 13.1 –5.6 –34.0 (8) 14.6 (3) 
 B2GP-PLYP-D3BJ 16.9 13.1 –4.0 –36.3 (8) 16.3 (3) 
 B2-PLYP 17.6 15.1 –10.7 –31.6 (8) 9.9 (3) 
 B2-PLYP-D3BJ 19.9 16.1 –10.5 –42.0 (8) 11.9 (3) 
 B2-PLYP-D3 20.3 17.0 –12.7 –39.9 (8) 9.8 (3) 
 PBEQI-DH 23.3 23.1 23.1 N/A 25.9 (4) 
 DSD-PBEP86 30.6 20.2 –14.8 –75.3 (8) 11.1 (3) 
 DSD-BLYP 32.7 25.1 –20.1 –72.0 (8) 11.0 (3) 
Ab initio SCS-MP2opt 20.9 18.3 5.5 –29.2 (8) 30.7 (3) 
 SCS(MI)-MP2 29.1 23.9 –7.2 –57.9 (8) 28.3 (3) 
  SCSN-MP2 25.9 22.3 19.0 –11.4 (5) 42.1 (3) 
aFootnote a to Table 1 applies here. bRMSD = root-mean-square deviation, MAD = mean-
absolute deviation, MSD = mean-signed deviation, LND = largest negative deviation, LPD = 
largest positive deviation. cThe isomerization reaction is given in parenthesis (see Figure 1). 
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Inclusion of the kinetic energy density in the MGGA procedures improves predicted 

isomerization energies. With the exception of three methods (BB95, MN12-L and VSXC), all the 

MGGAs result in RMSDs smaller than 20 kJ mol–1. In particular, TPSS-D3BJ results in a 

remarkably small RMSD of 15.3 kJ mol–1. These results are particularly impressive when 

considering that the reference G4(MP2) isomerization energies range between 307.5–1074.0 kJ 

mol–1. That is, these RMSDs amount to about 1.4% of the largest isomerization energy. In 

contrast to the GGAs, the MGGAs do not underestimate the isomerization energies across the 

board. Some MGGAs (e.g., TPSS, t-HCTH, VSXC, and BB95) tend to systematically 

underestimate the isomerization energies, whilst the Truhlar MGGAs (M06-L, M11-L, MN12-L, 

and MN15-L) tend to systematically overestimate the isomerization energies.  

The hybrid-GGA functionals show exceptionally poor performance with most RMSDs being 

well over 50 kJ mol–1 (Table S2 of the Supporting Information). The three functionals with 

RMSDs < 50 kJ mol–1 are B3PW91-D3, B3PW91-D3BJ, and APF-D. However, the RMSDs for 

these methods all exceed 45 kJ mol–1. Figure 3 shows that there is a general correlation between 

the amount of exact HF exchange in the HMGGAs and the RMSDs. Functionals with ~20% of 

exact exchange (e.g., B3LYP, B97-1, and B98) attain RMSD of 50–60 kJ mol–1, functionals with 

~25% of exact exchange (e.g., PBE0 and mPW1PW91) attain RMSD of 65–70 kJ mol–1, and 

functionals with over 40% of exact exchange (e.g., SOGGA11-X and BH&HLYP) attain RMSDs 

of over 100 kJ mol–1.  
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Figure 3. Linear relationship between the amount of exact exchange and the RMSD of the 
HGGA (blue line) and HMGGA (orange line) functionals. 
 

The range-separated DFT functionals show significantly poorer performance compared with 

the global hybrids. For example, none of the range-separated functionals results in an RMSD 

smaller than 50 kJ mol–1, and for most methods the RMSD exceeds 100 kJ mol–1 (Table S2 of the 

Supporting Information). 

All of the double-hybrid functionals show good-to-excellent performance, with the exception 

of the parameter free PBE0-DH procedure which attains an RMSD > 50 kJ mol–1 (Figure 2 and 

Table S2 of the Supporting Information). The best performing DHDFT procedures are the older-

generation B2T-PLYP and mPW2-PLYP functionals with RMSDs of 10.6 and 10.9 kJ mol–1, 

respectively. It is noteworthy that B2T-PLYP results in a near-zero mean-signed-deviation of –

1.1 kJ mol–1. Finally, we note that B2GP-PLYP and B2K-PLYP also show very good 

performance with RMSDs of ~15 kJ mol–1. 

The RMSDs for the MP2-based ab initio methods span a wide range: from ~140 (MP2, 

SCSN-MP2, and SCS-MP2-vdW) to 25.9 (SCSN-MP2) kJ mol–1. The SCS-MP2 procedure 
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shows poor performance with an RMSD of 88.2 kJ mol–1. Optimizing the same-spin and 

opposite-spin scaling factors to minimize the RMSD over the iso-C60 dataset results in an RMSD 

of 20.9 (SCS-MP2opt, Table 3). However, we note that this does not offer an advantage over the 

best performing GGA and meta-GGA methods, which are computationally much more 

economical.  

 

3.4. Optimal percentage of exact HF exchange. In the previous sections we have seen that 

inclusion of even moderate percentages of exact HF exchange in the functional form results in a 

significant deterioration in performance. Figure 3 shows the relationship between the amount of 

exact HF exchange and the RMSD of the HGGA and HMGGA functionals. Inspection of this 

Figure reveals two notable features:  

Ø For both the HGGA and HMGGA there is a general correlation between the amount of 

exact HF exchange and the RMSD 

Ø HMGGA procedures generally perform better than the HGGAs, albeit both procedures 

show poor performance  

 

Let us consider, for example, the performance of the HMGGA functionals. Procedures with 

10–15% of exact exchange (e.g., TPSSh and t-HCTHh) result in RMSDs of 30–35 kJ mol–1. 

Procedures with 27–28% of exact exchange (e.g., M06, PW6B95, and B1B95) result in RMSDs 

of 50–60 kJ mol–1. Procedures with 40–50% of exact exchange (e.g., BMK, MN15, and M06-2X) 

result in RMSDs of 75–120 kJ mol–1. The HGGA functionals show the same trend. For 

comparison, nearly all the GGA and MGGA procedures result in RMSDs below (or well below) 

30 kJ mol–1. Another key difference between the GGA/MGGA and HGGA/HMGGA procedures 

is that whilst the former tend to systematically underestimate the C60 isomerization energies (as 
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evident from negative MSDs), the latter overestimate the isomerization energies across the board 

(as evident from positive MSDs, Table 3). 

To investigate this further, we chose two GGAs (BLYP and HCTH) and two MGGAs (t-

HCTH and TPSS) and we have scanned the percentage of exact HF exchange between 0–100%. 

Let us start by examining the performance of these functionals with 10–100% of exact exchange. 

The RMSDs over the iso-C60 dataset for these functionals with 10–100% EXX are depicted in 

Figure 4a. It can be seen that these functionals exhibit almost perfect linear correlation between 

the RMSD and percentage of EXX. This is demonstrated by squared correlation coefficients R2 > 

0.9999 for all four functionals. It is also evident that the RMSDs increase rapidly with the 

percentage of exact exchange, for example, for BLYP we obtain the following RMSDs 

(percentage of EXX given in parenthesis) 25.3 (10%), 56.9 (20%), 90.8 (30%), 158.4 (50%), and 

320.2 (100%) kJ mol–1. Similar results are obtained for the other functionals (Figure 4a).  

Figure 4. Dependence of the RMSDs (a and b) and MSDs (c) for the iso-C60 dataset on the exact 
exchange mixing coefficient for two GGA (BLYP and HCTH) and two meta-GGA (t-HCTH and 
TPSS) functionals.  
 

Let us move to the RMSDs over the range of 0–10% EXX. These results are given in Figure 

4b. The four functionals exhibit a shallow minimum at very low percentages of EXX. Namely, at 

5% (BLYP), 4% (HCTH), and 3% (t-HCTH and TPSS). Inclusion of these admixtures of EXX 

reduces the RMSDs by 7.3 (BLYP), 5.9 (HCTH), 2.4 (t-HCTH), and 3.3 (TPSS) kJ mol–1 relative 
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to the pure functionals. Thus, the most pronounced improvement in performance is obtained for 

BLYP, where inclusion of 5% of EXX reduces the RMSD from 24.3 to 17.0 kJ mol–1. We note 

that this RMSD is comparable to that of the B2-PLYP DH functional at a significantly reduced 

computational cost.  

As discussed in the previous section the GGA and MGGA procedures tend to systematically 

underestimate the C60 isomerization energies. Figure 4c gives the MSDs for the four functionals 

at EXX percentages of 0–10%. For all four functionals the MSD varies linearly with the 

percentage of EXX in the functional form. The MSD changes sign from negative to positive at 4–

6% of exact HF exchange for the four functionals. This is consistent with the percentage of EXX 

which minimizes the RMSD (Fig. 4b). 

 

3.5. Dispersion corrections. Table 4 gathers the differences in RMSD between the dispersion-

corrected and uncorrected DFT functionals. We consider both the D3 correction with a zero-

damping function (∆D3 = RMSD(DFT) – RMSD(DFT-D3)) and the D3BJ correction with the 

finite Becke–Johnson damping function (∆D3BJ = RMSD(DFT) – RMSD(DFT-D3BJ)). A 

positive ∆D3 (or ∆D3BJ) value indicates that the dispersion correction improves the performance 

of the functional, whereas a negative value indicates deterioration in performance. Inspection of 

Table 4 reveals that inclusion of either the D3 or D3BJ correction has a relatively minor effect on 

the performance of DFT for the C60 isomerization energies. With the exception of four 

functionals the dispersion corrections affect the RMSDs by less than 5.0 kJ mol–1. In the four 

exceptions, the D3 correction improves the performance by 5.5 (TPSSh), 6.5 (B3LYP), 6.6 

(BMK), and 7.6 (B3PW91) kJ mol–1.  
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Table 4. Overview of the performance of various DFT functionals with and without empirical D3 
and D3BJ dispersion corrections. The tabulated values are ∆D3 = RMSD(DFT) – RMSD(DFT-
D3) and ∆D3BJ = RMSD(DFT) – RMSD(DFT-D3BJ) (in kJ mol–1).a  
 

Typeb Method ∆D3 ∆D3BJ 
GGA BLYP –2.4 2.5 
 PBE –1.5 0.5 
MGGA M06-L –1.7 N/A 
 TPSS –0.4 2.6 
HGGA BH&HLYP 4.4 2.2 
 B3LYP 6.5 4.2 
 B3PW91 7.6 4.7 
 PBE0 3.3 2.3 
HMGGA PW6B95 1.5 1.3 
 M05 1.5 N/A 
 M05-2X –0.8 N/A 
 M06 –0.3 N/A 
 M06-2X –1.7 N/A 
 M06-HF –1.0 N/A 
 BMK 6.6 3 
 B1B95 4.8 2.7 
 TPSSh 5.5 1.7 
RS CAM-B3LYP 3.5 2.2 
 LC-wPBE 3.7 2.2 
DH B2-PLYP –2.4 2.5 
 B2GP-PLYP –1.5 0.5 

aA positive value indicates the dispersion correction improves the performance of the functional, 
whereas a negative value indicates deterioration in performance.  
bFootnote a to Table 1 applies here.  

 

4. Conclusions  

We introduce a representative benchmark database of eight C60 isomers to be known as 

the iso-C60 database. The reference energies are obtained at the CCSD(T) level by means of the 

G4(MP2) composite method. These benchmark values allow us to assess the performance of a 

variety of contemporary DFT, DHDFT, and MP2-based ab initio procedures. We considered a 

total of 115 methods: 12 GGA, 11 meta-GGA, 26 hybrid-GGA, 25 hybrid-meta-GGA, 17 range-

separated, and 13 double-hybrid DFT methods; and 11 ab initio methods. With regard to the 

performance of the conventional DFT and DHDFT procedures we make the following 

observations:  
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Ø The average RMSD over the DFT functionals from each type are:  

§ GGA: 27.5 kJ mol–1 

§ Meta-GGA: 23.0 kJ mol–1 

§ Hybrid-GGA: 71.4 kJ mol–1 

§ Hybrid-meta-GGA: 81.4 kJ mol–1 

§ Double-hybrid: 22.5 kJ mol–1 

Ø The best performing DFT functionals from each type are (RMSDs are given in 

parenthesis):  

§ GGA: N12 (17.5), HCTH407 (20.3), BLYP-D3BJ (21.8 kJ mol–1)  

§ Meta-GGA: TPSS-D3BJ (15.3), M06-L (17.7), M11-L (18.1), t-HCTH 

(18.5), MN15-L (18.8 kJ mol–1) 

§ Hybrid-GGA (not recommended): B3PW91-D3 (45.6 kJ mol–1) 

§ Hybrid-meta-GGA: TPSSh-D3 (22.5 kJ mol–1) 

§ Double-hybrid: B2T-PLYP (10.6), mPW2-PLYP (10.9), B2GP-PLYP 

(14.8), and B2K-PLYP (15.3 kJ mol–1) 

Ø Overall, meta-GGA functionals show the best performance relative to computational cost.  

Ø Inclusion of percentages of exact HF exchange beyond 5% results in sharp deterioration 

in performance.  

Ø Empirical D3 and D3BJ dispersion corrections have a minor effect on performance.  

 

With regard to the performance of MP2-based ab initio procedures, we draw the following 

conclusions: 

Ø MP2 shows poor performance with an RMSD of 141.7 kJ mol–1  

Ø SCS-MP2 cuts this RMSD by 40% to 88.2 kJ mol–1 
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Ø Optimizing the same-spin and opposite-spin scaling factors to minimize the RMSD over 

the iso-C60 dataset results in an RMSD of 20.9 kJ mol–1. Thus, there is no advantage of 

using MP2-based methods over DHDFT or even simple GGA and meta-GGA functionals 

for the prediction of fullerene isomerization energies.  

 

Supplementary data 

Relative errors (Table S1) and error analysis (Table S2) for all 115 methods considered in the 

present work. Full references for the Gaussian and Molpro program suites (Table S3). 
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