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ABSTRACT: Density functional theory (DFT) has been extensively benchmarked for 

energetic properties; however, less attention has been given to equilibrium structures and the 

effect of using a certain DFT geometry on subsequent energetic properties. We evaluate the 

performance of 52 contemporary DFT methods for obtaining the structures of 122 species in 

the W4-11-GEOM database. This dataset includes a total of 246 unique bonds: 117 H–X, 65 

X–Y, 49 X=Y, and 15 X≡Y bonds (where X and Y are first- and second-row atoms) and 133 

key bond angles: 96 X-Y-H, 22 X-Y-Z, and 15 H-X-H angles. The reference geometries are 

optimized at the CCSD(T)/jul-cc-pV(n+d)Z level of theory (n = 5, 6). The performance of DFT 

is evaluated in conjunction with the Def2-nZVPP (n = T, Q), cc-pV(T+d)Z, and jul-cc-

pV(T+d)Z basis sets. The root-mean-square deviations (RMSDs) over the bond distances of 

the best performing functionals from each rung of Jacob’s Ladder are 0.0086 (SOGGA11), 

0.0088 (t-HCTH), 0.0058 (X3LYP), 0.0054 (TPSSh), and 0.0032 (DSD-PBEP86) Å. We 

evaluate the effect of the choice of the DFT geometry on subsequent molecular energies 

calculated with W1-F12 theory. Geometries obtained with GGA and MGGA methods result in 

large RMSDs in the subsequent W1-F12 energies; however, six hybrid GGA functionals 

(B3LYP, B3P86, mPW3PBE, B3PW91, mPW1LYP, and X3LYP) result in an excellent 

performance with RMSDs between 0.25–0.30 kJ mol–1 relative to the CCSD(T)/CBS reference 

geometries. The B2GP-PLYP and mPW2-PLYP DHDFT methods result in near-CCSD(T) 

accuracy with RMSDs of 0.11 and 0.10 kJ mol–1, respectively. 
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1. Introduction 

The concept of a molecular structure is fundamental to our understanding of chemistry 

and obtaining equilibrium molecular structures is the first step in most computational chemistry 

studies. A typical geometry optimization of a complex chemical system requires a large number 

of single-point energy calculations and, in addition, most efficient geometry optimization 

algorithms rely on at least the first derivatives of the energy.1,2,3 Thus, electronic structure 

methods used for geometry optimizations of medium-sized (or large) molecular systems need 

to be computationally efficient and robust. Over the past three decades, density functional 

theory (DFT) has become the dominant electronic structure method for obtaining molecular 

structures due to its attractive accuracy-to-computational cost ratio. For example, the popular 

B3LYP exchange correlation (XC) functional4 is used as the method of choice for calculating 

molecular structures in many composite ab initio methods that are approximating the CCSD(T) 

energy (coupled-cluster with single, double, and quasiperturbative triple excitations) near the 

one-particle basis set limit, e.g., Wn5 and Wn-F12 (n = 1, 2),6,7 ccCA,8 G4,9 G4(MP2),9 and 

CBS-QB3.10 Other CCSD(T) composite methods have adopted other DFT functionals for the 

geometry optimizations, e.g., BMK11 in the G4(MP2)-6X method.12 A fundamental limitation 

of the DFT formalism is the lack of a universal XC DFT functional,13,14 which has led to a 

proliferation in the number of developed DFT methods over the past couple of decades.15 

Therefore, the validation of DFT functionals has become an important step before using DFT 

for calculating a given chemical property.  

DFT has been extensively benchmarked for a wide range of thermochemical properties 

(e.g., reaction, isomerization, and conformational energies), with hundreds of benchmark 

studies have been published in this area over the past two decades. For an overview see, for 

example, refs. 16,17,18,19,20. However, less attention has been given to benchmarking 

equilibrium structures of main-group compounds and the effect of using a certain DFT 
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geometry on subsequent thermochemical properties. Adamo and co-workers,21 benchmarked a 

wide range of XC functionals for the CH, CO, and CC bonds of closed-shell organic molecules 

in the CCse21 and B3se47 databases of semi-experimental equilibrium structures.22,23 More 

recently,24 Morgante and Peverati presented an interesting benchmark study focusing on long 

C–C bond lengths where the reference bond distances were taken from the experimental crystal 

structures. The datasets used in these benchmark studies, however, focus almost exclusively 

on bonds between first-row atoms (and hydrogen). In addition, the conversion of experimental 

bond distances to electronic bond distances (re) on the Born–Oppenheimer (BO) potential 

energy surface (PES) involves back-correcting for effects that are not explicitly included in the 

DFT geometry optimizations (such as effects of different isotopologues and vibrational 

contributions),1,2,22,25 which by necessity increases the uncertainty of the reference values.  

In the present work, we assess the performance of DFT methods across the rungs of 

Jacob’s Ladder for the molecular structures in the W4-11-GEOM database.26,27 The reference 

geometries have been optimized on the electronic PES at the CCSD(T)/CBS level of theory. 

The W4-11-GEOM database includes 122 species, which cover a broad spectrum of bonding 

situations with a range of single and multiple bonds that involve varying degrees of covalent 

and ionic characters. As such this database constitutes an excellent benchmark set for 

evaluating the performance of DFT for a wide and diverse range of equilibrium structures. 
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2. Computational Methods 

 We use the CCSD(T)/CBS (i.e., coupled cluster with single, double, and 

quasiperturbative triple excitations close to the complete basis set limit) reference structures in 

the W4-11-GEOM database to evaluate the performance of a wide range of DFT methods. The 

DFT XC functionals considered in the present study (ordered by their rung on Jacob’s Ladder) 

are given in Table 1.  

 

Table 1. DFT exchange-correlation functionals considered in the present work.  

Typea Functionals 
GGA (8) BLYP,28,29 B97-D,30 HCTH407,31 PBE,32  

BP86,28,33 BPW91,29,34 SOGGA11,35 N1236 
MGGA (7) M06-L,37 TPSS,38 t-HCTH,39 VSXC,40  

M11-L,41 MN12-L,42 MN15-L43 
HGGA (17) BH&HLYP,44 B3LYP,28,45,46 B3P86,45,33  

B3PW91,45,34 PBE0,47 B97-1,48  
X3LYP,49 SOGGA11-X,50 APF,51  
mPW1PBE,32,52 mPW1PW91,34,52  
mPW3PBE,32,52 mPW1LYP,28,52 

wB97,53 wB97X,53 N12-SX,b,54  
CAM-B3LYPb,55 

HMGGA (14) M05,56 M05-2X,57 M06,58 M06-2X,58  
M06-HF,58 M08-HX,59 MN15,43 BMK,60  
B1B95,61,28 TPSSh,62 t-HCTHh,39  
PW6B95,63 MN12-SX,b,54 M11b,64  

DH (6) B2-PLYP,65 mPW2-PLYP,66 B2GP-PLYP,67 
DSD-PBEP86,68,69 PBE0-DH,70 PBEQI-DH71  

aGGA = generalized gradient approximation, MGGA = meta-GGA, HGGA = hybrid-GGA, HMGGA = hybrid-
meta-GGA, DH = double hybrid, MP = Møller–Plesset perturbation theory, Ab Initio = composite ab initio 
methods. bRange separated XC functional. 
 

All the standard DFT and DHDFT geometry optimizations were carried out utilizing 

the Karlsruhe-type Def2-nZVPP (n = T, Q) basis sets,72 and the correlation-consistent cc-

pV(T+d)Z and jul-cc-pV(T+d)Z basis sets.73,74,75,76 These calculations were performed using a 

large pruned (99,590) integration grid and all single point energies were converged to 10–8 a.u. 

We also note that all DFT geometry optimizations started from the optimized CCSD(T)/CBS 

reference geometries. All the CCSD(T) calculations involved in W1-F12 theory were 
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calculated using Molpro 2016,77,78 while all the other calculations (DFT, DHDFT, MP2, and 

lower-level composite procedures) were performed using the Gaussian 16 program suites.79  

All DFT and DHDFT geometry optimizations were followed by harmonic vibrational 

frequency calculations at the same level of theory to confirm that the stationary points are 

equilibrium structures, i.e., they have only real frequencies. It should be noted, however, that 

well-known pathological cases, most notably oxirene,80 ,81 ,82 were verified to be first-order 

saddle points characterized by one imaginary frequency at some levels of theory.  

 

3. Results and Discussion  

Overview of reference geometries and bond distances in the W4-11-GEOM database. The 

reference geometries in the W4-11-GEOM database were optimized at the CCSD(T)/jul-cc-

pV(6+d)Z level of theory, except for a small subset of larger molecules with low spatial 

symmetries for which the reference geometries were optimized at the CCSD(T)/jul-cc-

pV(5+d)Z level of theory (for further details see Table S1 of the Supporting Information). The 

W4-11-GEOM dataset includes 122 molecules (85 closed shell, 21 radical, 9 singlet carbene, 

and 7 triplet species). In terms of elemental composition, the dataset includes 88 first-row 

species (containing H and B–F), 17 second-row species (containing H and Al–Cl), and 17 

mixed first- and second-row species (containing H, B–F, and Al–Cl atoms). Table 2 gives an 

overview of the types of bonds in the W4-11-GEOM dataset. Overall, the database includes 

246 symmetry-unique bonds. Namely, 117 single bonds involving hydrogen (H–X), 65 single 

bonds between non-hydrogen atoms (X–Y), 49 double bonds (X=Y), and 15 triple bonds 

(X≡Y), where X and Y are non-hydrogen atoms from the first and second rows of the Periodic 

Table. For the complete list of bonds in the W4-11-GEOM dataset see Table S1 of the 

Supporting Information. For the purpose of the discussion below, each of the H–X, X–Y, X=Y, 
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and X≡Y bonds can be further divided into carbon containing bonds (referred to as the organic 

subset) and bonds without carbon (referred to as the inorganic subset). 

 

Table 2. Overview of the 246 unique bonds in the W4-11-GEOM database.a,b 

Bond type Organicc Inorganicd Overall Comment 
H–X 65 52 117 X = B–F, Al–Cl 
X–Y 37 28 65 X, Y = B–F, Al–Cl 
X=Y 29 20 49 X, Y = C, N, O, Si, S, Cl 
X≡Y 12 3 15 X, Y = B, C, N, P 
All 143 103 246 X = H, B–F, Al–Cl 

aFor the complete list of bonds, see Table S1 of the Supporting Information. bUnique bonds are not equivalent by 
symmetry, for example CH3Cl has two unique bonds (C–H and C–Cl). cX and/or Y is a carbon. dNot containing 
carbon. 
 

Overall performance for the 246 bonds in the W4-11-GEOM database. Table 3 gives an 

overview of the performance of DFT and DHDFT procedures for the 246 symmetry-unique 

single, double, and triple bonds in the W4-11-GEOM database (for the performance for the 

organic and inorganic subsets see Table S2 of the Supporting Information). The GGA methods 

result in relatively poor performance with RMSDs ranging between 0.009 (HCTH407) and 

0.018 (BLYP) Å. Inclusion of the kinetic energy density does not seem to improve the 

performance, with the MGGA methods resulting in RMSDs ranging between 0.008 (M06-L) 

and 0.022 (M11-L) Å. Notably, the older generation MGGA (without range separation) 

performs better than the dual-range M11-L functional. As expected, inclusion of exact 

exchange in the HGGA functionals results in improvements in performance over the GGA 

functionals. In particular, the best HGGA methods (B97-1, mPW1LYP, B3LYP, and X3LYP) 

result in an RMSD of 0.006 Å compared to an RMSD of 0.009 Å obtained for the best GGA 

(HCTH407). Inclusion of both exact exchange and the kinetic energy density results in an 

additional small improvement in performance. Namely, the best HMGGA method (TPSSh) 

results in an RMSD of 0.005 Å. The DHDFT functionals result in excellent performance with 

RMSDs ranging between 0.003 (DSD-PBEP86) and 0.004 (B2GP-PLYP) kJ mol–1, with the 
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exception of the parameter free PBE0-DH and PBEQI-DH procedures, which attain RMSDs > 

0.01 Å. 

 

Table 3. Overview of the performance of DFT procedures in conjunction with the Def2-

TZVPP basis set for the 246 bonds in the W4-11-GEOM database and subsets of single, double, 

and triple bonds (RMSDs are given in Å).a,b  

  All (246) X–H (117) X–Y (65) X=Y (49) X≡Y (15) 
GGA BLYP 0.0179 0.0110 0.0288 0.0137 0.0092 
 BP86 0.0137 0.0128 0.0178 0.0103 0.0079 
 B97-D 0.0126 0.0091 0.0172 0.0075 0.0218 
 PBE 0.0124 0.0125 0.0149 0.0095 0.0066 
 BPW91 0.0123 0.0110 0.0168 0.0094 0.0057 
 N12 0.0100 0.0063 0.0133 0.0121 0.0097 
 HCTH407 0.0094 0.0064 0.0112 0.0071 0.0207 
 SOGGA11 0.0086 0.0079 0.0109 0.0077 0.0043 
MGGA M11-L 0.0218 0.0103 0.0329 0.0250 0.0156 
 MN12-L 0.0113 0.0051 0.0159 0.0136 0.0141 
 TPSS 0.0106 0.0075 0.0163 0.0084 0.0043 
 MN15-L 0.0101 0.0129 0.0086 0.0034 0.0046 
 VSXC 0.0095 0.0044 0.0135 0.0052 0.0213 
 t-HCTH 0.0088 0.0059 0.0099 0.0068 0.0207 
 M06-L 0.0084 0.0038 0.0100 0.0079 0.0200 
HGGA BH&HLYP 0.0155 0.0081 0.0193 0.0198 0.0231 
 SOGGA11-X 0.0091 0.0025 0.0139 0.0104 0.0112 
 PBE0 0.0084 0.0033 0.0125 0.0098 0.0099 
 mPW1PBE 0.0084 0.0026 0.0122 0.0102 0.0105 
 mPW1PW91 0.0082 0.0022 0.0118 0.0104 0.0110 
 APF 0.0076 0.0033 0.0108 0.0091 0.0093 
 B3P86 0.0071 0.0024 0.0097 0.0091 0.0095 
 mPW3PBE 0.0069 0.0036 0.0093 0.0084 0.0084 
 B3PW91 0.0065 0.0033 0.0086 0.0082 0.0085 
 B97-1 0.0060 0.0038 0.0090 0.0054 0.0063 
 mPW1LYP 0.0060 0.0018 0.0070 0.0086 0.0105 
 B3LYP 0.0059 0.0027 0.0077 0.0075 0.0083 
 X3LYP 0.0058 0.0024 0.0070 0.0080 0.0092 
HMGGA M06-HF 0.0150 0.0044 0.0203 0.0186 0.0245 
 M08-HX 0.0106 0.0042 0.0143 0.0133 0.0154 
 BMK 0.0104 0.0032 0.0165 0.0105 0.0126 
 M05-2X 0.0102 0.0034 0.0140 0.0129 0.0150 
 MN15 0.0100 0.0040 0.0157 0.0092 0.0133 
 M06 0.0100 0.0032 0.0152 0.0117 0.0107 
 M05 0.0098 0.0031 0.0168 0.0090 0.0053 
 M06-2X 0.0097 0.0017 0.0139 0.0118 0.0149 
 B1B95 0.0091 0.0020 0.0131 0.0117 0.0121 
 PW6B95 0.0088 0.0033 0.0113 0.0119 0.0131 
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 t-HCTHh 0.0076 0.0044 0.0082 0.0055 0.0201 
 TPSSh 0.0054 0.0040 0.0074 0.0053 0.0047 
RS N12-SX 0.0108 0.0041 0.0153 0.0134 0.0139 
 M11 0.0106 0.0044 0.0145 0.0128 0.0159 
 MN12-SX 0.0106 0.0063 0.0143 0.0119 0.0135 
 wB97 0.0099 0.0027 0.0153 0.0098 0.0147 
 wB97-X 0.0095 0.0018 0.0137 0.0111 0.0149 
 CAM-B3LYP 0.0086 0.0014 0.0103 0.0121 0.0159 
DH PBE0-DH 0.0115 0.0032 0.0181 0.0126 0.0122 
 PBEQI-DH 0.0106 0.0043 0.0169 0.0107 0.0099 
 MP2 0.0081 0.0030 0.0053 0.0124 0.0197 
 B2GP-PLYP 0.0043 0.0030 0.0051 0.0054 0.0050 
 mPW2-PLYP 0.0043 0.0026 0.0050 0.0058 0.0052 
 B2-PLYP 0.0039 0.0016 0.0054 0.0053 0.0029 
 DSD-PBEP86 0.0032 0.0010 0.0037 0.0044 0.0059 

aGGA = generalized gradient approximation, HGGA = hybrid-GGA, MGGA = meta-GGA, HMGGA = hybrid-
meta-GGA, RS = range-separated, DH = double hybrid. bThe reference CCSD(T)/CBS bond distances are given 
in Table S3. 
 

 For the sake of completeness, we also examine the effect of empirical dispersion 

corrections on the performance of some of the of DFT functionals for the bond distances in the 

W4-GEOM-11 database. It should be stressed, however, that since the largest systems in this 

database are small monomers such as propane, ethanol, and acetic acid, long range 

intramolecular interactions are not expected to play a significant role in their structure 

determination. Table S4 of the Supporting Information gathers the differences in RMSDs over 

the 246 bond distances in the W4-11-GEOM database between the dispersion-corrected (using 

the D3BJ dispersion correction)83,84,85,86 and uncorrected DFT functionals. As expected, across 

all rungs of Jacob’s Ladder, inclusion of the D3BJ correction has no visible effect on the 

performance of the DFT functionals. The largest change in the RMSD is observed for the 

BLYP functional, where the inclusion of the D3BJ correction reduces the RMSD by merely 

0.0001 Å. The effects on the RMSDs for the other functionals are about an order of magnitude 

smaller than that (see Table S4). These results demonstrate that the geometries in the W4-11-

GEOM database are generally free from significant dispersion effects. Thus, this database 
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provides an evaluation of the performance of the underlying DFT functional without 

confounding dispersion effects.  

Overview of performance for X–H bonds. Table 3 gives an overview of the performance of 

the DFT and DHDFT procedures for the 117 hydride bonds (X–H) in the W4-11-GEOM 

database. Let us start with examining the performance for the entire set of hydride bonds. Over 

the entire set of hydride bonds GGAs show relatively poor performance, excepting HCTH407 

(0.0064) and N12 (0.0063), with RMSDs ranging between 0.008–0.013 Å. Two of the MGGAs 

(VSXC and M06-L) show much better performance with RMSDs of 0.004 Å. Nearly all HGGA 

and HMGGA functionals demonstrate much better performance with RMSDs ranging between 

0.002–0.004 Å. Specifically, the best performing methods attain RMSDs of 0.0018 

(mPW1LYP) and 0.0017 (M06-2X) Å. The DHDFT methods result in RMSDs ranging 

between 0.001–0.004 Å, where the best performing methods are DSD-PBEP86 and B2-PLYP 

with RMSDs of 0.0010 and 0.0016 Å, respectively. Overall, with the main exception of the 

GGA functionals, nearly all of the MGGA, HGGA, HMGGA, RS, and DH methods attain 

RMSDs < 0.006 Å. 

Table S5 gives an overview of the performance for the subsets of organic (C–H) and 

inorganic (X–H, X = B, N–Cl) bonds. Most functionals exhibit slightly better performance for 

the organic C–H bonds over the inorganic X–H bonds. However, the differences in 

performance are relatively small. In most cases the ratio between the two RMSDs (RMSDX–

H/RMSDC–H) is below 1.5.  

 

Overview of performance for single bonds between heavy atoms. Moving to the set of 65 

single X–Y bonds (X, Y = B–F and Al–Cl), inspection of the results in Table 3 shows that 

performance for the X–Y bonds is significantly worse than for X–H bonds. Most of the DFT 

methods from rungs 2–4 of Jacob’s Ladder result in RMSDs ranging between 0.01–0.02 Å. 
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The best performing functionals from each rung of Jacob’s Ladder are the GGAs SOGGA11 

(0.0109) and HCTH407 (0.0112); MGGAs MN15-L (0.0086) and t-HCTH (0.0099); HGGAs 

X3LYP (0.0070) and mPW1LYP (0.0070); and HMGGAs TPSSh (0.0074) and t-HCTH 

(0.0082 Å). DHDFT methods show consistently better performance over conventional DFT 

procedures. The B2-PLYP, mPW2-PLYP, B2GP-PLYP show very similar performance with 

RMSDs ranging between 0.0050–0.0054 Å. MP2 essentially attains the same performance with 

an RMSD of 0.0053 Å. The spin-component-scaled DSD-PBEP86-D3BJ method results in 

exceptionally good performance with an overall RMSD of merely 0.0037 Å. However, the 

parameter-free PBE0-DH and PBEQI-DH procedures result in poor performance with RMSDs 

of 0.017–0.018 Å.  

 It is instructive to compare the performance for organic single bonds (C–X, X = C, N, 

O, F, Cl) with the inorganic single bonds (B–F, N–N, N–O, N–Cl, O–O, O–F, O–Cl, F–F, F–

Cl, F–Si, Al–F, Al–Cl, Si–Si, P–P, S–S, Cl–Cl). Inspection of Table S6 of the Supporting 

Information reveals that the performance is systematically and significantly worse for the 

subset of inorganic bonds. This may be attributed to stronger multireference and polar nature 

of the inorganic bonds. This is particularly pronounced for four of the HMGGA methods from 

the Minnesota family (M05-2X, M06-2X, M06-HF, and M08-HX) which show substantially 

deteriorated performance for the inorganic bonds with RMSDs that are 3–4 times larger than 

of the organic bonds. Overall, the DSD-PBEP86 DHDFT method shows exceptionally good 

performance for both organic and inorganic bonds with RMSDs of 0.0020 and 0.0052 Å, 

respectively. 

 

Overview of performance for double X=Y bonds. Table 3 gives an overview of the 

performance for the 49 double bonds in the W4-11-GEOM database. The best performers over 

these bonds are (RMSDs given in parentheses): the GGAs B97-D (0.0075) and HCTH407 
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(0.0071); the MGGAs VSXC (0.0052) and MN15-L (0.0034); the HGGA B97-1 (0.0054); the 

HMGGAs t-HCTHh (0.0055) and TPSSh (0.0053); the DHDFT methods B2-PLYP (0.0053) 

and DSD-PBEP86 (0.0044 Å). Thus, when considering the best performing functionals, there 

is little overall improvement when going from MGGAs to HGGAs, HMGGAs, and even 

DHDFT methods. It should be pointed out, however, that compared to DHDFT, MP2 shows 

significantly deteriorated performance for double bonds with an overall RMSD of 0.0124 Å. 

We also note that the MGGAs, HGGAs, HMGGAs, and DHDFT methods show similar 

performance for the organic C=X and inorganic X=Y bonds (Table S7 of the Supporting 

Information), however, the GGAs tend to result in larger errors for the latter bonds.  

 

Overview of performance for triple X≡Y bonds. The W4-11-GEOM database includes 15 

triple bonds, 12 of which involve carbon. Overview of the performance of DFT and DHDFT 

procedures for the triple bonds is given in the last column of Table 3. Most of the DFT methods 

from rungs 2–4 of Jacob’s Ladder result in RMSDs ranging between 0.008–0.027 Å. The best 

performing functionals from each category are the GGAs SOGGA11 (0.0043) and BPW91 

(0.0057); MGGAs TPSS (0.0043) and MN15-L (0.0046); HGGAs B97-1 (0.0063) and B3LYP 

(0.0083); HMGGAs TPSSh (0.0047) and M05 (0.0053 Å). Again, DHDFT methods show 

consistently better performance over conventional DFT procedures. Of the DHDFT methods, 

B2-PLYP shows the best performance with an RMSD of 0.0029 Å. The B2GP-PLYP and 

mPW2-PLYP methods tie in second place with RMSDs of 0.0050 and 0.0052 Å, respectively. 

Similar to the performance for double bonds, MP2 shows significantly deteriorated 

performance relative to DHDFT for the triple bonds with an overall RMSD of 0.0197 Å.  

 

Overview of performance for bond angles. It is of interest to also examine the performance 

of the DFT and DHDFT methods for the equilibrium bond angles in the W4-11-GEOM 
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database. For this purpose, we selected 133 key bond angles, specifically: 96 X-Y-H, 22 X-Y-

Z, and 15 H-X-H angles (where X, Y, and Z are non-hydrogen atoms). For the complete list of 

angles along with the CCSD(T)/CBS reference values see Table S8 of the Supporting 

Information. Table 4 gives an overview of the performance of the DFT and DHDFT procedures 

for these 133 bond angles. Inspection of the error statistics in Table 4 reveals two key findings: 

(i) on average, most DFT methods tend to overestimate the bond angles, as evident from 

positive mean-signed deviations (MSDs), and (ii) nearly all of the conventional DFT methods 

attain RMSDs ranging between 0.5–1.0°. The GGA, MGGA, and range-separated hybrid 

methods show relatively poor performance with RMSDs ranging between 0.50° (TPSS) and 

1.06° (M11). The best performing HGGA and HMGGA methods attain RMSDs below 0.5°, 

namely: 0.49° (t-HCTHh), 0.44° (B97-1 and SOGGA11-X), and 0.41° (TPSSh). With the 

exception of PBE0-DH for which we obtain an RMSD of 0.51°, all the DHDFT methods result 

in excellent performance with RMSDs ranging between 0.25° (DSD-PBEP86) and 0.40° 

(mPW2-PLYP and PBEQI-DH). For comparison MP2 attains a substantially larger RMSD of 

0.66°. Of particular note is the exceptionally good performance of the DSD-PBEP86 method 

with RMSD and MAD of 0.25° and 0.16°, respectively. It is also noteworthy that the largest 

deviation for DSD-PBEP86 is merely 1.24°, for comparison the largest deviation for MP2 is 

5.1° (see Supporting Information for further details).   

 

Table 4. Overview of the performance of DFT procedures in conjunction with the Def2-

TZVPP basis set for the 133 bond angles in the W4-11-GEOM database (error statistics are 

given in °).a,b,c  

  RMSD MAD MSD 
GGA N12 0.94 0.63 0.42 
 SOGGA11 0.88 0.63 0.32 
 BLYP 0.69 0.51 0.13 
 HCTH407 0.67 0.52 0.24 
 BPW91 0.59 0.45 0.14 
 PBE 0.58 0.44 0.14 
 BP86 0.58 0.44 0.12 



13 

 B97-D 0.57 0.42 0.13 
MGGA M11-L 0.79 0.65 0.13 
 VSXC 0.73 0.56 0.12 
 MN12-L 0.70 0.53 0.28 
 t-HCTH 0.63 0.49 0.22 
 M06-L 0.62 0.52 0.21 
 MN15-L 0.56 0.41 0.00 
 TPSS 0.50 0.38 0.05 
HGGA BH&HLYP 0.80 0.55 0.43 
 X3LYP 0.62 0.46 0.30 
 B3LYP 0.62 0.45 0.29 
 mPW1LYP 0.60 0.45 0.30 
 B3P86 0.56 0.42 0.29 
 mPW3PBE 0.55 0.42 0.28 
 B3PW91 0.55 0.42 0.28 
 mPW1PW91 0.54 0.42 0.29 
 APF 0.54 0.41 0.28 
 mPW1PBE 0.53 0.41 0.29 
 PBE0 0.53 0.41 0.29 
 B97-1 0.44 0.34 0.19 
 SOGGA11-X 0.44 0.33 0.21 
HMGGA M06-HF 1.17 0.84 0.40 
 MN15 0.87 0.55 0.43 
 M06 0.79 0.60 0.40 
 M05 0.77 0.58 0.36 
 M08-HX 0.76 0.48 0.39 
 BMK 0.63 0.39 0.29 
 M05-2X 0.61 0.38 0.28 
 M06-2X 0.58 0.37 0.29 
 B1B95 0.56 0.41 0.29 
 PW6B95 0.55 0.39 0.29 
 t-HCTHh 0.49 0.37 0.20 
 TPSSh 0.41 0.30 0.13 
RS M11 1.06 0.61 0.51 
 N12-SX 1.04 0.66 0.53 
 CAM-B3LYP 0.71 0.48 0.37 
 MN12-SX 0.61 0.47 0.29 
 wB97-X 0.54 0.37 0.29 
 wB97 0.54 0.35 0.26 
DH MP2 0.66 0.26 0.04 
 PBE0-DH 0.51 0.38 0.28 
 PBEQI-DH 0.40 0.29 0.22 
 mPW2-PLYP 0.40 0.28 0.19 
 B2-PLYP 0.38 0.26 0.15 
 B2GP-PLYP 0.37 0.26 0.15 
 DSD-PBEP86 0.25 0.16 0.09 

aGGA = generalized gradient approximation, HGGA = hybrid-GGA, MGGA = meta-GGA, HMGGA = hybrid-
meta-GGA, RS = range-separated, DH = double hybrid. bThe reference CCSD(T)/CBS bond angles are given in 
Table S8. cRMSD = root-mean-square deviation, MAD = mean-absolute deviation, MSD = mean-signed 
deviation.  
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Optimal percentage of exact Hartree–Fock exchange. It is instructive to examine the 

relationship between the percentage of exact HF exchange in a given functional and its 

performance. Figure 1 plots the RMSDs over the 246 bonds in the W4-11-GEOM database and 

percentage of exact Hartree–Fock exchange for the HGGAs. Here it is evident that functionals 

with 20–25% of exact-exchange (EXX) admixture show the best performance. For example, 

B3LYP (20% EXX), B97-1 (21% EXX), and mPW1LYP (25% EXX) attain the lowest RMSDs 

of 0.006 Å. To examine this further, we chose two GGAs (BLYP and PBE) and two meta 

GGAs (𝜏-HCTH and TPSS) and scanned the percentage of exact HF exchange by adding exact 

exchange to the pure functionals. The MSDs and RMSDs over the 246 bonds in the W4-11-

GEOM database are depicted in Figure 2. The MSDs vary linearly with the percentage of EXX 

for all four functionals, where no EXX admixture leads to positive MSDs of up to 0.01 Å and 

100% of EXX admixture results in large negative MSDs of up to –0.03 Å. The MSD curve 

crosses the x-axis at 2.3% (𝜏-HCTH) and 24.1% (BLYP), thus there is a substantial variation 

in the optimal percentage of EXX admixture between the four functionals. Figure 2 also shows 

that at the EXX percentage for which the MSDs are zero, all the functionals result in small 

RMSDs. In particular, the RMSDs are around the minimum are: 0.0041 (TPSS), 0.0057 (PBE), 

0.0060 (BLYP), and 0.0073 (𝜏-HCTH) Å (Figure 2). For comparison, the RMSDs are obtained 

for the original semi-local functionals are significantly higher, namely: 0.0106 (TPSS), 0.0124 

(PBE), 0.0179 (BLYP), and 0.0088 (𝜏-HCTH) Å (Table 3). The one exception being 𝜏-HCTH 

which exhibits a very shallow minimum around 13.6%, and all values between 2–20% yield 

roughly comparable performance.   
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Figure 1. Relationship between the RMSDs over the 246 unique bonds in the W4-11-GEOM 

database and the percentage of exact exchange mixing coefficient for the HGGA functionals. 

The RMSDs are taken from Table 3. 

 

 

Figure 2. Dependence of the mean-signed deviation (MSD) and root-mean-square deviations 

(RMSDs) over the 246 unique bonds in the W4-11-GEOM database on the exact exchange 

mixing coefficient for two GGA (BLYP and PBE) and two meta-GGA (t-HCTH and TPSS) 

functionals. 
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Basis set dependency of the DFT and DHDFT bond distances. Table S9 of the Supporting 

Information gathers the differences in RMSD between the geometries optimized with the Def2-

TZVPP and Def2-QZVPP basis sets for the 246 bonds in the W4-11-GEOM database (∆RMSD 

= RMSD(Def2-TZVPP) – RMSD(Def2-QZVPP). A positive ∆RMSD value indicates an 

improvement in performance when moving from the Def2-TZVPP to the Def2-QZVPP basis 

set. Inspection of Table S9 reveals two interesting trends. (i) Two thirds of the ∆RMSD values 

are negative, i.e., most functionals exhibit an overall slight deterioration in performance with 

the larger basis set. (ii) With the exception of 11 DFT methods and 4 DHDFT methods, all the 

∆RMSD values are below 0.0005 Å (in absolute value), that is the basis set dependence is at 

this point is very small. These results indicate that, at least for the relatively small systems 

considered in the present work, the Def2-TZVPP bond distances are sufficiently close to the 

Def2-QZVPP bond distances such that the use of the larger basis does not seem to be warranted. 

Overall, only three methods exhibit a significant basis set dependence with ∆RMSD > 0.001 

Å, namely (∆RMSDs are given in parentheses): M06-HF (–0.0024), SOGGA11 (–0.0015), and 

PBEQI-DH (–0.0011 Å). It has been previously noted that the M06-HF and SOGGA11 

functionals exhibit a somewhat erratic basis set dependence.87,88  

 It is also of interest to examine the performance of the DFT and DHDFT methods in 

conjunction with the correlation-consistent cc-pV(T+d)Z and jul-cc-pV(T+d)Z basis sets. This 

allows a comparison between the Karlsruhe-type and correlation-consistent basis sets, as well 

as an examination of the effect of diffuse functions on the DFT geometries. Table S10 of the 

Supporting Information gives the RMSDs over the 246 bonds in the W4-11-GEOM database 

for the correlation-consistent basis sets. Comparison between the RMSDs for the Def2-TZVPP 

and cc-pV(T+d)Z basis sets reveals that, with the main exception of the GGA and MGGA 

methods, the cc-pV(T+d)Z basis set exhibits somewhat better performance than Def2-TZVPP. 

However, in most cases the differences between the RMSDs for the two basis sets are small 
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and do not exceed 0.0004 Å. For the Minnesota functionals the RMSDs for the cc-pV(T+d)Z 

basis set are smaller than those for the Def2-TZVPP basis set by somewhat larger amounts, 

namely: 0.0005 (SOGGA11-X, M06-HF, M06-2X, M05-2X), 0.0006 (M11-L), and 0.0007 

(M08-HX, M11) Å. Comparison of the RMSDs for the cc-pV(T+d)Z and jul-cc-pV(T+d)Z 

basis sets (Table S10) reveals that addition of diffuse functions has a relatively minor effect on 

performance. With two exceptions, the RMSDs for the two basis sets differ by up to 0.0004 Å. 

Interestingly, for two Minnesota functionals addition of the diffuse functions results in 

deterioration in performance by 0.0005 (M11-L) and 0.0007 (SOGGA11) Å. 

 

Energetic consequences of the functional used for geometry optimizations. Due to the high 

computational cost of geometry optimizations and frequency calculations, in many (if not 

most) quantum chemical investigations of medium-sized and large systems these calculations 

are performed at the DFT level in conjunction with an economical basis set (normally of triple-

zeta quality for medium-sized systems and double-zeta quality for large systems) and then the 

single-point energies are refined using a higher level of theory. This is also the case in 

economical composite ab initio procedures (e.g., W1, W2, W1-F12, W2-F12, ccCA, G4, 

G4(MP2), and CBS-QB3)7,8,9,10 where the geometries and frequencies are calculated with the 

B3LYP functional in conjunction with a triple-zeta quality basis set and the energies are 

extrapolated to the CCSD(T)/CBS limit. While most composite ab initio methods by default 

use the B3LYP functional for the geometry and frequency calculations, it is worth re-

examining this choice in the context of the large and diverse set of molecules in the W4-11-

GEOM database. To do this, we use the DFT methods considered in the present work to 

generate reference geometries for W1-F12 theory. The resulting W1-F12 energies (using the 

various DFT reference geometries) were compared to W1-F12 energies obtained with the 

CCSD(T)/CBS reference geometries in the W4-11-GEOM database. The RMSDs in the 
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electronic energy due to the change in reference geometry are given in Table 5. Before 

proceeding to a discussion of the RMSDs in Table 5, we note that errors in the bond distances 

(whether they are overestimations or underestimations) should in principle lead to 

overestimation of the molecular energies relative to those obtained at the CCSD(T)/CBS 

equilibrium geometries. Indeed, the mean-signed-deviations for all the functionals are positive 

and essentially equal to the mean-absolute deviations (see Table 5).  

 

Table 5. Effect of the choice of the DFT reference geometry on molecular energies calculated 

via W1-F12 theory for the 122 molecules in the W4-11-GEOM database (error statistics are in 

kJ mol–1).a,b,c,d  

  RMSD MAD MSD 
GGA B97-D 2.92 1.05 1.05 
 HCTH407 2.53 0.60 0.59 
 BLYP 2.49 1.75 1.75 
 BP86 1.68 1.26 1.26 
 BPW91 1.48 1.05 1.05 
 PBE 1.48 1.09 1.09 
 SOGGA11 0.61 0.43 0.42 
 N12 0.53 0.39 0.37 
MGGA M11-L 3.36 2.53 2.52 
 VSXC 2.62 0.58 0.58 
 t-HCTH 2.48 0.53 0.53 
 M06-L 2.16 0.37 0.35 
 TPSS 1.14 0.75 0.75 
 MN15-L 0.85 0.61 0.60 
 MN12-L 0.78 0.58 0.58 
HGGA BH&HLYP 1.72 1.24 1.23 
 B97-1 0.55 0.24 0.23 
 SOGGA11-X 0.54 0.29 0.29 
 PBE0 0.40 0.25 0.25 
 mPW1PBE 0.40 0.25 0.24 
 mPW1PW91 0.39 0.24 0.24 
 APF 0.33 0.21 0.21 
 B3LYP 0.29 0.20 0.19 
 B3P86 0.28 0.18 0.17 
 mPW3PBE 0.28 0.19 0.18 
 B3PW91 0.26 0.18 0.17 
 mPW1LYP 0.25 0.18 0.17 
 X3LYP 0.25 0.18 0.17 
HMGGA t-HCTHh 2.31 0.42 0.41 
 M06-HF 1.97 1.23 1.23 
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 BMK 1.39 0.46 0.45 
 M08-HX 0.81 0.54 0.54 
 M05-2X 0.77 0.44 0.43 
 M05 0.69 0.33 0.33 
 M06-2X 0.66 0.37 0.35 
 M06 0.60 0.39 0.37 
 MN15 0.57 0.32 0.31 
 B1B95 0.46 0.30 0.29 
 PW6B95 0.44 0.30 0.29 
 TPSSh 0.36 0.21 0.21 
RS M11 0.81 0.57 0.57 
 N12-SX 0.73 0.49 0.48 
 wB97 0.72 0.39 0.38 
 MN12-SX 0.60 0.46 0.45 
 wB97-X 0.60 0.34 0.34 
 CAM-B3LYP 0.49 0.32 0.31 
 wB97-XD 0.45 0.28 0.28 
DH MP2 1.51 0.58 0.57 
 PBE0-DH 0.70 0.45 0.44 
 PBEQI-DH 0.54 0.35 0.33 
 B2-PLYP 0.22 0.10 0.09 
 DSD-PBEP86 0.17 0.08 0.07 
 B2GP-PLYP 0.11 0.06 0.04 
 mPW2PLYP 0.10 0.06 0.04 

aGGA = generalized gradient approximation, HGGA = hybrid-GGA, MGGA = meta-GGA, HMGGA = hybrid-
meta-GGA, RS = range-separated, DH = double hybrid. bThe reference values are CCSD(T)/CBS energies from 
W1-F12 theory calculated using the best CCSD(T)/CBS reference geometries in the W4-11-GEOM database. 
cDFT geometries are calculated in conjunction with the Def2-TZVPP basis set. dRMSD = root-mean-square 
deviation, MAD = mean-absolute deviation, MSD = mean-signed deviation.  
 
 

Since CCSD(T)-based composite ab initio methods are capable of sub-kcal-per-mole 

accuracy for non-multireference species, we will deem errors arising from the reference 

geometry below 0.5 kJ mol–1 (i.e., ~12% of 1 kcal mol–1) as acceptable. All the GGA methods 

result in large RMSDs ranging from 2.9 (B97-D) and 0.5 (N12) kJ mol–1. In particular, the B97-

D, HCTH407, BLYP, BP86, BPW91, and PBE methods result in RMSDs > 1 kJ mol–1 and are 

not recommended for geometry optimizations. Overall, the MGGA methods do not perform 

better than the GGA methods and result in large errors ranging from 3.4 (M11-L) and 0.8 

(MN12-L) kJ mol–1. Where M11-L, VSXC, t-HCTH, and M06-L result in RMSDs > 2 kJ mol–

1 and TPSS results in an RMSD > 1 kJ mol–1. These MGGAs are thus not recommended for 

geometry optimizations.  
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Performance is substantially improved when moving to the HGGAs, this by itself is 

very much expected, however, the magnitude of the reductions in RMSDs across the board are 

somewhat surprising. The BH&HLYP functional is the main outlier here with a large RMSD 

of 1.7 kJ mol–1. Apart of B97-1 and SOGGA11-X which result in RMSD ≈ 0.5 kJ mol–1, all the 

HGGA methods result in excellent performance with RMSDs ≤ 0.5 kJ mol–1. In particular, the 

six HGGA functionals (B3LYP, B3P86, mPW3PBE, B3PW91, mPW1LYP, and X3LYP) 

result in RMSDs between 0.25–0.30 kJ mol–1 and are all recommended for geometry 

optimizations. Notably, the best performing functionals include the popular B3LYP method, 

which confirms that this is a good method to use for geometry optimizations in composite ab 

initio procedures. However, of the recommended functionals, B3LYP is not the best performer, 

and methods such as B3PW91, mPW1LYP, and X3LYP have a slight advantage over B3LYP.  

With the exception of TPSSh, B1B95, and PW6B95, all the HMGGA methods result 

in disappointing performance with RMSDs ranging from 2.3 (t-HCTHh) and 0.6 (MN15) kJ 

mol–1. In particular, t-HCTHh, M06-HF, and BMK result in large RMSDs > 1.4 kJ mol–1 and 

are not recommended for geometry optimizations. The best performing HMGGAs result in 

RMSDs of 0.46 (TPSSh), 0.44 (B1B95), and 0.36 (PW6B95) kJ mol–1. Nevertheless, these 

RMSDs are larger than those obtained by the best performing HGGAs (vide supra). In a similar 

manner, the range-separated procedures do not provide an improvement over the global hybrids 

for these systems. The best range-separated functionals (CAM-B3LYP and wB97-XD) result 

in RMSDs of 0.49 and 0.45 kJ mol–1, respectively.  

A significant improvement in performance over the hybrid GGAs is provided by the 

double-hybrid methods. With the exception of PBE0-DH and PBEQI-DH, all the DHDFT 

methods result in excellent performance with RMSDs ranging between 0.22 (B2-PLYP) and 

0.10 (mPW2PLYP) kJ mol–1. In particular, B2GP-PLYP and mPW2PLYP give performance 

which is comparable to that of the CCSD(T)/CBS reference geometries.89 It is important to 
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point out that with accelerating techniques such as density fitting (or resolution of the 

identity)90,91 the MP2 step of the DHDFT calculation reaches only 25–30% of the total CPU 

time for medium-sized systems such as C60.89 Finally, in contrast to DHDFT, MP2 results in 

poor performance with an RMSD of 1.5 kJ mol–1 and is therefore not recommended for 

geometry optimizations. 

Finally, it is of interest to examine the effect of using the same DFT functional for 

obtaining both the geometries and zero-point vibrational energies (ZPVEs). For this purpose, 

we consider the functionals for which optimal ZPVE scaling factors have been obtained in 

conjunction with the Def2-TZVPP basis set in ref. 92. Table S11 of the Supporting Information 

gives the RMSDs over the 122 ZPVE-inclusive W1-F12 energies in the W4-11-GEOM 

database. Overall, the RMSDs for the ZPVE-exclusive (Table 5) and ZPVE-inclusive (Table 

S11) energies differ by relatively small amounts of up to 0.5 kJ mol–1.  

 

4. Conclusions  

We evaluate the performance of a variety of contemporary DFT methods for obtaining the 

structures of the 122 first- and second-row species in the W4-11-GEOM database, which 

includes a total of 246 unique bonds: 117 H–X, 65 X–Y, 49 X=Y, and 15 X≡Y bonds, and 133 

key bond angles: 96 X-Y-H, 22 X-Y-Z, and 15 H-X-H angles. The reference structures in the 

W4-11-GEOM database are optimized at the CCSD(T)/jul-cc-pV(6+d)Z level of theory (or 

CCSD(T)/jul-cc-pV(5+d)Z for 14 larger systems). We evaluate the performance 52 DFT 

methods across the rungs of Jacob’s Ladder in conjunction with the Def2-nZVPP (n = T, Q), 

cc-pV(T+d)Z, and jul-cc-pV(T+d)Z basis sets. Our main conclusions can be summarized as 

follows:  

! In terms of bond distances, the best performing functionals from each rung of Jacob’s 

Ladder are, root-mean-square deviations (RMSDs) in parentheses: SOGGA11 
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(0.0086), t-HCTH (0.0088), X3LYP (0.0058), TPSSh (0.0054), and DSD-PBEP86 

0.0032 (Å). 

! The best performing double-hybrid DFT methods, DSD-PBEP86, B2-PLYP, B2GP-

PLYP, and mPW2-PLYP, achieve near-CCSD(T) accuracy with RMS deviations of 

0.0032–0.0043 Å.  

! For comparison, MP2 theory attains an overall RMSD of 0.0081 Å, where particularly 

poor performance is observed for double and triple bonds.  

! The single X–Y bonds pose a particular challenge for many conventional DFT 

functionals. The best performing functionals from each rung of Jacob’s Ladder are 

(RMSDs in parentheses): the GGAs SOGGA11 (0.0109) and HCTH407 (0.0112); 

MGGAs MN15-L (0.0086) and t-HCTH (0.0099); HGGAs X3LYP (0.0070) and 

mPW1LYP (0.0070); HMGGAs TPSSh (0.0074) and t-HCTH (0.0082); and DHDFT 

method DSD-PBEP86 (0.0037 Å).  

! In terms of bond angles, most of the conventional DFT methods attain RMSDs ranging 

between 0.5–1.0°. The best performing HGGA and HMGGA methods (t-HCTHh, 

B97-1, SOGGA11-X, and TPSSh) attain RMSDs between 0.4–0.5°. Most of the 

DHDFT methods result in excellent performance with RMSDs ranging between 0.25° 

(DSD-PBEP86) and 0.40° (mPW2-PLYP and PBEQI-DH). For comparison MP2 

attains a substantially larger RMSD of 0.66°. 

! With few exceptions, the conventional DFT methods exhibit a weak basis set 

dependency, such that the RMSDs of the Def2-TZVPP and Def2-QZVPP basis sets are 

smaller than 0.0001 Å. In a similar manner, the Def2-TZVPP, cc-pV(T+d)Z, and jul-

cc-pV(T+d)Z basis sets show similar performance.  

! Finally, we examine the effect of the reference DFT geometry on the final energy in the 

context of economical composite ab initio methods. Most GGA and MGGA methods 
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result in large RMSDs of up to 3.4 kJ mol–1 in the final W1-F12 energies and are thus 

not recommended for geometry optimizations in composite ab initio procedures. 

Performance is substantially improved when moving to the HGGAs, where six 

functionals (i.e., B3LYP, B3P86, mPW3PBE, B3PW91, mPW1LYP, and X3LYP) 

result in RMSDs between 0.25–0.30 kJ mol–1 and are thus recommended for geometry 

optimizations. Interestingly, HMGGA methods do not offer an improvement over the 

HGGA methods. A significant improvement in performance over the hybrid GGAs is 

provided by the double-hybrid methods. In particular, B2GP-PLYP and mPW2PLYP 

give performance which is comparable to that of the CCSD(T)/CBS reference 

geometries with RMSDs of merely 0.11 and 0.10 kJ mol–1, respectively.  
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