Graphene Catalysis Made Easy

Amir Karton, School of Science and Technology, University of New England, Armidale, NSW, Australia

<table>
<thead>
<tr>
<th>1</th>
<th>Introduction</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Overview of Applications of Graphene in Catalysis</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Role of van der Waals interactions in Catalysis</td>
<td>3</td>
</tr>
<tr>
<td>1.3</td>
<td>Role of Shape Complementarity in Catalysis</td>
<td>3</td>
</tr>
<tr>
<td>1.4</td>
<td>Role of Computational Chemistry in Investigating Nanomaterials</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Catalysis by Pristine Graphene</td>
<td>4</td>
</tr>
<tr>
<td>2.1</td>
<td>Pristine Graphene Catalysis of Bowl-to-Bowl Inversion in Geodesic Aromatic Systems</td>
<td>5</td>
</tr>
<tr>
<td>2.2</td>
<td>Pristine Graphene Catalyzed Enantiomerization of Biphenyls and Biaryls of Synthetic Relevance</td>
<td>7</td>
</tr>
<tr>
<td>2.3</td>
<td>Pristine Graphene Catalyzed Skeletal Inversions of Helicenes and Cyclooctatetraene Derivatives</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>Conclusions</td>
<td>10</td>
</tr>
<tr>
<td>References</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

Abstract

Catalysis by pristine 2D materials is an emerging form of eco-friendly, heterogeneous catalysis. We review recent computational studies in the field of pristine-graphene catalysis, in which graphene efficiently catalyzes chemical processes via \(\pi \)-interactions and shape complementarity. These include (1) bowl-to-bowl inversion of curved aromatic molecules (e.g., corannulene and sumanene), (2) enantio- and regioselectivities in reactions of biaryl compounds (e.g., benzil, binaphthyl derivatives), and (3) skeletal inversions of helicenes and cyclooctatetraene derivatives. A pristine graphene catalyst reduces the reaction barrier heights for these processes by amounts ranging from 10 to 50 kJ mol\(^{-1}\), which correspond to reaction rate enhancements by \(2 \)–10 orders of magnitude at room temperature. The graphene-catalyzed enantiomerization of BINOL has been confirmed experimentally through chiral HPLC measurements. We highlight potential applications of pristine-graphene catalysis in (1) the dynamic kinetic resolution of biaryls and (2) the directional self-assembly of bowl-shaped aromatic molecules across the graphene monolayer.

Key Points

- Pristine 2D catalysts are emerging as eco-friendly alternatives to homogeneous metal catalysts
- Pristine 2D catalysts do not require monolayer functionalization
- This chapter reviews recent advances in catalysis by pristine graphene
- Pristine graphene catalyzes chemical reactions via dispersion and electrostatic interactions
- Pristine graphene catalyzes the racemization reactions of synthetic relevance
- Pristine graphene catalyzes bowl-inversions of curved aromatic molecules leading to directional self-assembly across the monolayer

1 **Introduction**

1.1 **Overview of Applications of Graphene in Catalysis**

The discoveries of new allotropes of carbon with low dimensionalities over the past three decades – buckminsterfullerene,\(^1\)\(^2\) single-walled carbon nanotubes,\(^3\)\(^4\) and single-layer graphene\(^5\)\(^6\) – have defined the field of nanotechnology. Each of these discoveries has led to the birth of a flourishing subfield in nanotechnology. Indeed, over the past two decades, fullerenes, nanotubes, graphene, and their functionalized derivatives have found numerous applications across many branches of physics, chemistry, biology, engineering, pharmacy, agriculture, and textiles, to name a few.\(^6\)\(^7\)\(^8\) This chapter provides an overview of applications of pristine graphene in chemical catalysis.

Graphene is an atom-thick two-dimensional (2D) material composed of \(\text{sp}^2 \)-hybridized carbons. Graphene was discovered at the beginning of this century by Andre Geim and Konstantin Novoselov at the University of Manchester. The 2010 Nobel Prize in Physics recognized this discovery. Remarkably, graphene was discovered while trying to answer a simple question: how thin can graphite be made? For decades, sticky tape has been applied to graphite to clean its surface before microscopy work. However, in a purely curiosity-driven experiment, the sticky tape was placed under the microscope instead of the clean surface of graphite, and a thin graphite film consisting of only several layers of graphene was observed.\(^9\)\(^10\) The tape dispenser and the lump of graphite are now...
The remarkable physical and chemical properties of graphene, and in particular, its 2D structure, large surface area, and ease of chemical functionalization, make graphene an ideal catalyst support nanomaterial for various chemical processes, ranging from organic synthesis to polymerization reactions.\(^{19,26-37}\) Graphene-based heterogeneous catalysts provide eco-friendly alternatives for traditional homogeneous catalysts such as metal-based and Brønsted/Lewis acid catalysts. This may have significant industrial implications since heterogeneous catalysts (that is, catalysts that are insoluble in the reaction mixture) are much easier to separate and reuse compared with homogeneous catalysts (that is, catalysts that are soluble in the reaction mixture). Graphene-based materials are also attracting increasing attention due to the ease by which they can interact with polymers, organic dyes, enzymes, and proteins through covalent and noncovalent interactions. New catalytic applications of these materials are continuously being reported in the literature. The present chapter focuses on applications of pristine graphene in catalysis; for in-depth overviews of functionalized graphene-based catalysts, the reader is referred to several excellent reviews published over the past decade.\(^{19,28-37}\)

Fig. 1 illustrates the various ways in which graphene can be chemically functionalized. In functionalized graphene, catalysis can occur at defect sites (e.g., hole vacancies and edges), heteroatom dopants (e.g., N, B, and P), adatoms adsorbed on graphene (e.g., D- and p-block elements), and functional groups such as those present in graphene oxide (GO) and reduced GO (rGO).\(^{38-40}\) For example, the functional groups in GO, such as epoxides, hydroxyls, carbonyls, carboxyls, and lactols, can catalyze a range of oxidation reactions, including the selective oxidation of olefins, alcohols, thiols, and sulfides.\(^{30,41-44}\) GO has also been shown to catalyze Friedel–Crafts reactions, Michael additions, and ring-opening polymerizations.\(^{38,62-44}\) Another class of highly successful graphene-based catalysts is graphene/transition metal composites.\(^{19,28,29,33,34}\) For example, the platinum/graphene composite can catalyze methanol oxidation and oxygen reduction reactions in fuel cells. Similarly, it has been found that palladium and gold nanoparticles dispersed on GO can catalyze the Suzuki cross-coupling reaction. This coupling reaction is among the most widely used for the formation of carbon–carbon bonds.\(^{39,44}\) As a side note, it is worth mentioning that Akira Suzuki received the Nobel Prize in Chemistry in 2010, the same year Andre Geim and Kostya Novoselov received the Nobel Prize in Physics for the discovery of graphene.

It is important to note, however, that in the above functionalized-graphene catalysts, the pristine part of graphene does not play an active role in catalysis but is the catalyst support. Whilst the pristine part of graphene serves as a highly effective catalyst support nanomaterial, the underlying mechanisms for the synthesis of GO and rGO remain elusive, and the structure of functionalized graphene catalysts such as GO is not well understood.\(^{19,26,36,34}\) A potential limiting factor in the application of such graphene-based catalysts is the lack of a uniform or well-determined structure and the synthetic challenges associated with controlling the distribution of defects, vacancies, dopants, adatoms, and functional groups across the monolayer. As pointed out by De Feyter and coworkers,\(^{43}\) the non-quantification and variability of the functional groups incorporated in GO and rGO may lead to low reproducibility of the catalytic effects, and the difficulty in identifying the exact source of the catalytic effect hinders the rational design of new catalysts. Pristine graphene (or other pristine 2D materials), on the other hand, does not suffer from such limitations since it has a well-defined structure and may serve as a readily available catalyst (Fig. 1(b)). Over the past decade, catalysis by pristine graphene (or other 2D materials) has emerged as an exciting form of catalysis with several applications.\(^{45,46}\)
1.2 Role of van der Waals interactions in Catalysis

Van der Waals (vdW) interactions play a prominent role in supramolecular chemistry and nanomaterials as well as in organic, organometallic, and supramolecular catalysis. Of particular relevance to the present review is catalysis or increased selectivity in the presence of graphite. Since vdw interactions accumulate, they are expected to play an increasingly important role with larger molecular substrates. This is illustrated for interactions by examining the binding energies between increasingly larger aromatic dimers. For example, the binding energies for a series of aromatic parallel displaced (PD) dimers amount to 10.7 (benzene PD dimer), 24.9 (naphthalene PD dimer), and 83.6 (coronene PD dimer) kJ mol\(^{-1}\). These binding energies are calculated using high-level coupled cluster methods (e.g., at the CCSD(T) or CCSDT(Q) levels) and are expected to have chemical accuracy, defined as errors below \(\sim 0.4\) kJ mol\(^{-1}\) for weak interactions. It should be noted that the binding energy between graphene and each of the above molecules (benzene, naphthalene, and coronene) is expected to be significantly higher than the above binding energies in the dimers. For example, a recent density functional theory (DFT) study found that the binding energy between graphene and benzene is approximately 4–5 times larger than the binding energy of the benzene dimer. The binding energy for the circumcoronene dimer cannot be obtained using high-level coupled cluster methods of theory; nevertheless, it is expected to exceed 200 kJ mol\(^{-1}\). Overall, the above results demonstrate that interactions between graphene and polycyclic aromatic systems can exceed the energies required for bond rotation and breaking in organic systems.

1.3 Role of Shape Complementarity in Catalysis

Shape complementarity between the catalyst and transition structure is one of the cornerstones of chemical catalysis. This concept was initially proposed by Pauling in 1948 in the context of enzymatic catalysis, and was soon after adopted for explaining rate accelerations of a wide range of enzymatic reactions. In an elegant application of this concept, Houk, Hilvert, and co-workers rationalized the catalytic mechanism of the highly efficient antibody catalyst for a Diels–Alder reaction (Antibody 1E9). Based on X-ray structure analysis and extensive DFT and docking calculations, Houk, Hilvert, and co-workers were able to show that the close shape complementarity between the transition structure and binding pocket underlines the catalytic function and selectivity of the Diels–Alderase antibody. Importantly, this work illustrates that shape complementarity plays a critical role in catalytic processes involving a transition structure with little charge separation or directional interactions (e.g., hydrogen bonds). The next section focuses on how chemical processes that involve transition structures with little or no charge separation can be catalyzed by pristine 2D graphene via shape complementarity and π–π interactions.

Induced-fit catalysis is conceptually similar to catalysis via shape complementarity and is worth mentioning here. Geodesic polyaromatics are polycyclic aromatic hydrocarbons (PAHs) in which structural geometry constraints result in a curved π-system. These systems exhibit unique structural, electronic, and optical properties, such as large dipole moments and dynamic bowl-inversion behavior. In the prototypical coronulene molecule (C\(_{20}H_{10}\)), a pentagon surrounded by five hexagons results in a highly strained bowl-shaped structure with a bowl depth of 0.87 Å. Corannulene undergoes a rapid bowl-to-bowl inversion via a planar transition structure. For example, it is estimated that corannulene inverts more than 200,000 times per second at room temperature. Siegel and co-workers performed DFT calculations and dynamic \(^1\)H NMR measurements to show that when corannulene passes through a cyclophane receptor catalysis, the barrier for the bowl inversion in corannulene is significantly reduced relative to the barrier of the uncatalyzed reaction. Following this work, Kroeger and Karton used extensive DFT and energy decomposition analysis calculations to demonstrate that perylene bisimide cyclophanes can catalyze a range of stereo-inversion processes via induced-fit catalysis. These processes include the structural inversions of annulenes, bowl-to-bowl inversions of geodesic PAHs and phospangulenes, and the enantiomerizations of substituted biphenyl and biaryl compounds. More recently, Siegel and co-workers showed that this type of induced-fit catalysis could be inhibited by a transition-state phenanthroline analog. This work demonstrates that a complex catalytic/inhibition enzymatic activity which normally requires an organized array of biological functional groups can be mimicked using a simple abiological system. Similar to enzymatic catalysis, this type of induced-fit catalysis typically involves both ground-state destabilization and transition-state stabilization.

1.4 Role of Computational Chemistry in Investigating Nanomaterials

Before proceeding to describe the unique catalytic properties of pristine graphene, it is instructive to emphasize the role of computational chemistry in these discoveries. Parallel with the increased experimental research into new catalytic applications of graphene-based materials is the increased computational modeling of their chemical properties. Computational chemistry is a branch of chemistry that models chemical processes by using classical or quantum mechanical calculations rather than experiments. Due to significant advances in quantum chemical theories and high-performance supercomputing technology, computational chemistry provides powerful means for exploring currently unknown chemistry and for designing efficient catalysts and other functional molecules and materials. This approach accelerates the discovery and development of nanomaterials since it is often easier (and cheaper) to investigate a wide range of nanomaterials, chemical processes/properties, and reaction conditions computationally and then synthesize and conduct experiments only for the most promising nanomaterials. Computational modeling is also vital for obtaining mechanistic insights and a better understanding of chemical processes at the molecular and atomic levels.

Nanomaterials, by definition, involve relatively large chemical systems, often with hundreds of atoms or more. Density functional theory is the dominant approach in modeling nanomaterials due to its attractive accuracy-to-computational cost ratio.
DFT calculations scale as \(N_{\text{bas}}^3 \) for generalized gradient approximation (GGA) methods and as \(N_{\text{bas}}^4 \) for hybrid-GGA methods, where \(N_{\text{bas}} \) is the number of basis functions involved in the calculation. For comparison, correlated ab initio calculations scale as \(N_{\text{bas}}^{10} \) (MP2 or DHDFT), \(N_{\text{bas}}^{12} \) (CCSD), and \(N_{\text{bas}}^{14} \) (CCSD(T)).\(^{58,65,99}\) In addition, conventional DFT methods (rungs 2–4 of Jacob's Ladder) exhibit a relatively fast basis set convergence relative to correlated ab initio methods such as second-order Möller–Plesset perturbation (MP2), double-hybrid DFT (DHDFT), and coupled-cluster (CC) methods. Therefore, in many DFT investigations, it is often sufficient to optimize the equilibrium and transition structures in conjunction with a double-\(\zeta \) basis set, such as Def2-SVP, and refine the electronic energies in conjunction with a triple-\(\zeta \) basis set, such as Def2-TZVP.\(^{99–101}\) This is due not only to the relatively fast basis-set dependence of DFT methods but also to systematic basis-set errors, which tend to cancel out in the calculation of reaction energies and barrier heights.\(^{102–107}\) In contrast, correlated ab initio calculations such as MP2, DHDFT, and CCSD(T) require significantly larger basis sets due to their exceedingly slow basis set convergence.\(^{58,99,108}\) Having said that, some caution is needed in the choice of DFT method and basis set in any given application of DFT methods, as described in more detail below. For additional in-depth discussions, we recommend several recent reviews and perspective articles.\(^{79,107,108}\)

Due to the computational cost and predictive accuracy of dispersion-corrected DFT methods, DFT simulations have played a critical role over the past decade in (1) the computational and rational design of functional 2D materials, (2) the discovery of new 2D materials, and (3) exploring new functionalities of 2D materials.\(^{98,109–113}\) Kohn–Sham DFT involves an unknown exchange-correlation (XC) functional, which must be modeled somehow.\(^{114,115}\) Over the past three decades, there have been extensive theoretical developments of new XC functionals, resulting in numerous different models for the XC functional.\(^{108,116,117}\) The performance of the various XC approximations can vary significantly for different chemical properties and systems. For example, a DFT method that shows good performance for bond dissociation energies may not show equally good performance for reaction barrier heights. Likewise, a DFT method that performs well for main-group species may not perform well for transition metal systems. Therefore, in practical applications of DFT, it is important to choose a DFT method that gives reliable results for the chemical system and property at hand. There are two straightforward approaches to guide the selection of a suitable DFT method (1) Perdew's Jacob's Ladder of DFT and (2) conducting a literature search for DFT benchmark studies that evaluated the performance of DFT methods for similar chemical systems and properties. The performance of DFT methods has been extensively benchmarked for a wide range of chemical systems and properties. These studies resulted in extensive performance evaluations of many DFT methods covering a wide range of thermochemical and kinetic properties across the Periodic Table.\(^{115–118}\) In addition, a general concept that helps select an appropriate DFT method is Jacob's Ladder of DFT.\(^{119}\) Generally speaking, performance for most chemical properties improves with the level of sophistication of the XC functional. That is, performance improves in the order (1) methods employing only the local density; (2) pure GGA methods, which additionally employ the reduced density gradient; (3) meta-GGA methods, which additionally employ the kinetic energy density; (4) hybrid-meta-GGA methods, which additionally involve the occupied orbitals; and (5) DHDFT functionals, which additionally employ the virtual orbitals. For examining catalytic processes, it is desirable to use a DFT method that performs well for both reaction energies and barrier heights.\(^{120}\) It is well-established that pure GGA methods typically do not perform well for either reaction barrier heights or for challenging thermochemical properties. Therefore, GGA methods are not recommended for investigating catalytic processes.\(^{116,117}\) Hybrid GGA methods often exhibit a trade-off between their performance for thermochemistry and kinetics, depending on the percentage of Hartree–Fock (HF) exchange incorporated in the functional form.\(^{116,117,121}\) Functionals with moderate amounts of HF exchange (~20%) perform well for thermochemistry, whereas functionals with high amounts of HF exchange (~40%) perform well for reaction barrier heights. Hybrid-meta GGA methods (rung 4 of Jacob's Ladder) and double-hybrid methods (rung 5 of Jacob's Ladder) can overcome this deficiency to a considerable extent.\(^{116,117,121–123}\) Therefore, it is recommended to use hybrid-meta GGA (and, where possible, DHDFT) methods for investigations of catalytic potential energy surfaces (PESs).

Modeling nanomaterials using molecular orbital DFT often requires using model systems. Nanographenes are often used as models of graphene in hybrid DFT and DHDFT simulations.\(^{46,66,74–79,124–134}\) This approach allows for the use of more advanced and accurate electronic structure methods than those available (or computationally affordable) in periodic boundary conditions simulations, which are often limited to dispersion-corrected GGA methods. In molecular orbital DFT simulations, one would normally use a nanographene with a diameter ranging between 1 and 3 nm, such as (diameter given in parentheses) \(\text{C}_{44}\text{H}_{16} \) (1.2 nm), \(\text{C}_{44}\text{H}_{24} \) (1.7 nm), \(\text{C}_{160}\text{H}_{60} \) (2.2 nm), and \(\text{C}_{214}\text{H}_{16} \) (2.7 nm). In the following sections, we will focus on the computational studies which predicted that pristine graphene could catalyze chemical processes via π-interactions and shape complementarity.

2 Catalysis by Pristine Graphene

Sections 1.1–1.3 illustrate that both accumulative vdW interactions and shape complementarity can play important roles in chemical catalysis. These aspects have been firmly established as essential parts of chemical catalysis for many years. However, they become particularly important (and sometimes the only means) for stabilizing transition structures with little or no charge separation and directional functional groups (e.g., hydrogen bond donors or acceptors). Pristine graphene is characterized by the following properties:

- The largest surface area of any known material
- Distinct planar two-dimensional morphology
- Evenly distributed π-system across the monolayer
- Can interact with substrates via accumulative van der Waals interactions
Due to these unique properties, pristine graphene is emerging as an ideal catalyst for chemical processes that proceed via a planar (or nearly planar) transition structure. The availability of a vast 2D π-system is particularly important for this form of catalysis. Here, extensive π-π and π-σ interactions act as the main driving force for catalysis. The magnitude of these interactions is proportional to the size of the substrate and the size of the substrate’s π-system. Importantly, catalysis by pristine graphene also overcomes the need for the chemical functionalization of the monolayer. Thus, pristine graphene is a readily available and environmentally sustainable heterogeneous catalyst.

2.1 Pristine Graphene Catalysis of Bowl-to-Bowl Inversion in Geodesic Aromatic Systems

Due to its large surface area and excellent chemical and mechanical stability, pristine graphene has been extensively used as a 2D material for templated synthesis and for 2D assembly of molecules and nanomaterials. In these applications, graphene serves as a growth template for assembling organic systems (such as pentacene and phthalocyanines) and inorganic systems (such as gold cyanide nanowires). Here, van der Waals and electrostatic interactions play a key role in the spontaneous assembly of the organic and inorganic substrates on the graphene monolayer. In addition to the applications in templated synthesis and self-assembly, it has been found that pristine graphene (or nano-sized fragments of graphene) can significantly speed up the rate of reactions that proceed via planar (or nearly planar) transition structures.

The first example of this unique catalytic activity has been demonstrated for the inversion reaction of non-planar aromatic compounds such as the fragments of the famous Buckminsterfullerene (C$_{60}$) carbon cluster. Buckminsterfullerene is a highly symmetrical molecule that can be broken down into two basic geodesic PAH fragments – corannulene and sumanene.

Let us begin with the bowl-to-bowl inversion in corannulene. Corannulene is one of the most interesting PAHs – it involves a pentagon completely surrounded by hexagons, and therefore due to geometrical ring strain, it adopts a bowl-shaped structure. The depth of the bowl has been measured to be ~0.87 Å depending on the temperature. Corannulene has 20 π-electrons and is therefore not aromatic according to the Hückel 4n + 2 rule. However, it still benefits from a significant resonance stabilization energy, which has been estimated to be 186.2 kJ mol$^{-1}$ (cf. a value of 244.3 kJ mol$^{-1}$ obtained for corone). The planar structure of corannulene is a first-order saddle point corresponding to the bowl-to-bowl inversion. It has been found that increased π-electron delocalization stabilizes the planar structure of corannulene by about 44.8 kJ mol$^{-1}$ relative to the bowl-shaped structure. However, the planar structure also involves a significantly increased level of strain which destabilizes it by about 100.4 kJ mol$^{-1}$ relative to the bowl-shaped structure.

These opposite effects result in a planarization barrier of 48.1 kJ mol$^{-1}$ estimated from dynamic 1H NMR measurements. Fig. 2 shows the equilibrium and transition structures involved in the bowl-to-bowl inversion. It is important to note in this context that a single substitution at the rim of the bowl with a simple functional group, such as a halide or a methyl, renders the concave and convex structures.

So far, we have seen the following structural and chemical properties of pristine graphene and corannulene: (i) graphene has a distinct 2D planar morphology, (ii) graphene has an extended π-system that interacts with hydrocarbon substrates via cumulative π-π and σ-π interactions, (iii) the bowl-to-bowl inversion in corannulene involves nonplanar reactants and products, but a completely planar transition structure (Fig. 2). These observations raise the following hypothesis regarding the interaction between graphene and corannulene: due to shape complementarity, pristine graphene should interact more strongly with the planar bowl-to-bowl inversion transition structure than with the nonplanar bowl-shaped equilibrium structure. This means that pristine graphene would catalyze the bowl-to-bowl inversion in corannulene. This hypothesis was found to be true nearly a decade ago using DHDFT calculations. In particular, these high-level computational simulations predicted that a nanographene catalyst reduces the reaction barrier height for the bowl-to-bowl inversion by about 50%.

![Equilibrium (face down) -> Transition Structure (planar) -> Equilibrium (face up)](image)

Fig. 2 Equilibrium and transition structures in the bowl-to-bowl inversion in corannulene.
product in which corannulene is situated face-up on the graphene monolayer. Second, the reaction barrier heights in both directions are significantly reduced relative to the uncatalyzed reaction barrier height of 47.3 kJ mol\(^{-1}\). In particular, we obtain reaction barrier heights of 26.1 and 39.3 kJ mol\(^{-1}\) for the forward and reverse reactions, respectively. We note that according to the Eyring equation, a reduction of 5.7 kJ mol\(^{-1}\) in the reaction barrier height corresponds to an increase of one order of magnitude in the reaction rate at room temperature. Therefore, the calculated catalytic enhancements (\(\Delta \Delta G^{\ddagger} = \Delta G^{\ddagger}_{298,\text{calc}} - \Delta G^{\ddagger}_{298,\text{cat}}\)) of 21.2 kJ mol\(^{-1}\) in the forward direction and 8.0 kJ mol\(^{-1}\) in the reverse direction correspond to rate enhancements of 3.7 and 1.4 orders of magnitude, respectively.

These computational results indicate that graphene can not only catalyze the bowl-to-bowl inversion in corannulene but also orient the bowl to be situated face-up on the monolayer. The preferential binding of corannulene in a face-up orientation is due to the larger \(x\)-system and electron density on the outside of the bowl compared to the inside of the bowl.\(^{6,14,149,150}\) We note that this type of directional self-assembly on graphene could result in a hybrid nanocarbon material with unique electronic properties due to the considerable molecular dipole moment of corannulene of 2.07 Debye (cf. with dipole moments of \(~\sim\)1.8 Debye for water and hydrogen fluoride).\(^{151}\) We hope that these computational predictions will inspire experimental explorations of the graphene-catalyzed bowl-to-bowl inversion in corannulene and the directional self-assembly of corannulene on graphene.

Sumanene is another bowl-shaped fragment of \(\text{C}_{36}\).\(^{81,151-153}\) However, whilst corannulene and sumanene are geometrically similar, they exhibit significant structural differences. First, corannulene is a pentagon surrounded by five pentagons, whereas sumanene is a hexagon surrounded by three pentagons and three hexagons. In addition, corannulene involves only \(sp^2\) carbons, whereas sumanene involves eighteen \(sp^2\) carbons and three \(sp^3\) carbons. In essence, sumanene can be thought of as triphenylene in which the three terminal phenyl rings are connected via \(sp^3\) carbons, forcing a bowl-shaped structure. Sumanene has a deeper bowl, with a depth of 1.11 Å, and accordingly, the reaction barrier for the bowl-to-bowl inversion is considerably higher than in corannulene. At the above level of theory (\text{revDSDPBE}86-D3BJ/Def2-TZVPP), we obtain \(\Delta G_{298,\text{calc}}^{\ddagger} = 85.0\) kJ mol\(^{-1}\) for the bowl-to-bowl inversion in sumanene (Fig. 4). As is the case for the bowl-to-bowl inversion in corannulene, the calculated reaction barrier height is in excellent agreement with the experimental reaction barrier height of \(\Delta G_{303,\text{exp}}^{\ddagger} = 84.9\) kJ mol\(^{-1}\), obtained from 2D NMR measurements.\(^{154}\)

A nanographene catalyst affects the PES for the bowl-to-bowl inversion in sumanene in a similar way to the bowl-to-bowl inversion in corannulene. However, an important distinction is that the thermodynamic driving force for the sumanene bowl being situated face-up on the graphene monolayer becomes significantly larger. Namely, the thermodynamic preference for the bowl facing upwards increases from 13.1 kJ mol\(^{-1}\) in corannulene (Fig. 3) to 34.1 kJ mol\(^{-1}\) in sumanene (Fig. 4). Overall, the nanographene catalyst reduces the reaction barrier for the bowl-to-bowl inversion in sumanene from 85.0 kJ mol\(^{-1}\) in the uncatalyzed inversion to 39.2 kJ mol\(^{-1}\) in the forward direction and to \(\Delta G_{298,\text{calc}}^{\ddagger} = 73.3\) kJ mol\(^{-1}\) in the reverse direction. The relatively low reaction barrier height in the forward direction indicates that it should be possible to orient sumanene molecules adsorbed on graphene with their bowls facing upwards. The relatively high barrier in the reverse direction indicates that this directional self-assembly on graphene could remain stable at temperatures around 273 K. This makes sumanene a more suitable candidate than corannulene for directional self-assembly on graphene. In this context, it should be mentioned that sumanene has a similar dipole moment to that of corannulene and that the three benzylic \(\text{CH}_2\) groups offer functionalization routes that are not possible in corannulene.\(^{153}\) Again, we hope that these computational predictions will inspire experimental explorations of the catalyzed bowl-to-bowl inversion and directional self-assembly of sumanene on single-layer graphene.

The catalytic enhancements in the graphene-catalyzed bowl-to-bowl inversions in corannulene and sumanene are driven by shape complementarity between planar graphene and planar transition structure, enabling greater stabilization of the transition structures over the bowl-shaped equilibrium structures. At the revDSD-PBEP86-D3BJ/Def2-TZVPP level of theory, the interaction
energy between the nanographene catalyst and corannulene amounts to 174.1 kJ mol\(^{-1}\) in the complex where the bowl is faced downwards (reactant in Fig. 3) and 187.2 kJ mol\(^{-1}\) in the complex where the bowl is faced upwards (product in Fig. 3). However, the interaction energy increases to 195.2 kJ mol\(^{-1}\) in the transition structure complex where there is more effective overlap between the \(\pi\)-systems of corannulene and the nanographene catalyst due to shape complementarity. It is also instructive to shed light on the intermolecular forces responsible for this catalytic activity via energy decomposition analyses,155,156 which show that the 2D graphene sheet stabilizes the planar transition structure via dispersion and electrostatic interactions. Very similar observations are made for the bowl-to-bowl inversion in sumanene, see Ref. 46 for further details.

2.2 Pristine Graphene Catalyzed Enantiomerization of Biphenyls and Biaryls of Synthetic Relevance

We have shown above that nanographene can efficiently catalyze the bowl-to-bowl inversion in corannulene and sumanene through shape complementarity and \(\pi\)-\(\pi\) interactions. Over the past decade, it has been found that pristine graphene can also efficiently catalyze rotation processes involving biphenyls and biaryls.157,158,159 These findings are exciting not only because they...
generalize the catalytic activity of pristine graphene but also because they extend pristine 2D catalysis to processes of synthetic relevance, such as the dynamic kinetic resolution of biaryls.

Let us begin with the rotation about the C–C bond in biaryls. 1,1′-binaphthyl is composed of two naphthyl units linked by a sigma C–C bond. Due to steric repulsions, 1,1′-binaphthyl is a highly nonplanar aromatic compound with a torsional angle of 68.6° between the two naphthyl units. 1,1′-binaphthyl has axial chirality and can exist as two configurationally stable enantiomers. The interconversion between the two enantiomers can proceed via a syn- or anti-type transition structure. The anti-type transition structure is kinetically favorable. The reaction barrier for the rotation about the C–C bond has been calculated at the PW6B95-D3BJ/Def2-TZVPP level of theory to be 106.0 kJ mol⁻¹. 161 This reaction barrier height is in good agreement with the experimentally available reaction barrier heights of 98.5 and 100.7 kJ mol⁻¹. 162,163 Fig. 5(a) compares the reaction profiles on the Gibbs free PES for the uncatalyzed and graphene-catalyzed chirality inversions. As can be seen in the uncatalyzed reaction profile, the naphthyl units in the transition structure are nearly co-planar (Fig. 5(a)). Therefore, it is expected that pristine graphene would catalyze the chirality inversion. Indeed, a nanographene catalyst reduces the calculated reaction barrier height by as much as 36.6 kJ mol⁻¹ resulting in a

Fig. 6 Equilibrium structures of a series of benzannulated COT derivatives with an increasing level of benzannulation in adjacent positions (a) COT, (b) mono-benzannulated COT, (c) di-benzannulated COT, (d) tri-benzannulated COT, and (e) tetra-benzannulated COT. The DFT-optimized structures are taken from Kroeger, A.A., Karton, A., 2021. π-π catalysis in carbon flatland—flipping [8]annulene on graphene. Chem. Eur. J. 27, 3420-3426.

Fig. 7 Catalytic enhancements (∆∆G‡) for the graphene-catalyzed skeletal inversions of a series of benzannulated COT derivatives. These results are taken from reference Kroeger, A.A., Karton, A., 2021. π-π catalysis in carbon flatland—flipping [8]annulene on graphene. Chem. Eur. J. 27, 3420-3426.
catalytic barrier height of 69.4 kJ mol\(^{-1}\). Inspection of the graphene-catalyzed reaction profile in Fig. 5(a) reveals that in the equilibrium complex, only one naphthyl unit is parallel to the graphene catalyst due to the large torsional angle between the two naphthyl units. The complexation energy in this equilibrium complex amounts to 43.2 kJ mol\(^{-1}\). However, in the transition structure complex, where both the 1,1’-binaphthyl and graphene are nearly planar, both naphthyl units lie parallel to the graphene catalyst, resulting in a more effective overlap between the two π-systems. The more effective overlap between the two π-systems in the transition structure complex relative to the equilibrium complex is the origin of the relatively large catalytic enhancement of \(\Delta G^\ddag_{298} = 36.6\) kJ mol\(^{-1}\) (Fig. 5(a)).

Let us move to the graphene-catalyzed rotation of the C–C bond in 1,1’-binaphthyl-2,2’-diol (BINOL). BINOL is a highly privileged axially chiral scaffold, which forms the basis for many chiral organometallic catalysts, as well as the starting material in the synthesis of a growing family of phosphoric acid organocatalysts. However, the enantioselective production of BINOL and its derivatives remains a challenge. Kinetic resolution strategies are often generally applicable and suited to large-scale synthesis but suffer from the inherent limitations of waste and separation, as the yield is limited to a maximum of 50%. Therefore, dynamic kinetic resolution forms an attractive synthesis strategy.

In 2018, Akai utilized a ruthenium-based catalyst for the racemization of BINOL, which was combined with a lipase-catalyzed acylation for the dynamic kinetic resolution of BINOL. Pristine graphene may serve as an environmentally benign and economical alternative to the homogeneous ruthenium catalyst. The above results for 1,1’-binaphthyl suggest that pristine graphene could efficiently catalyze the racemization of axially chiral, configurationally stable BINOL. Fig. 5(b) shows the uncatalyzed and graphene-catalyzed enantiomerization of BINOL. The reaction barrier height for the uncatalyzed racemization amounts to 168.5 kJ mol\(^{-1}\). Accordingly, the uncatalyzed process requires temperatures above 200 °C. A nanographene catalyst results in an appreciable catalytic enhancement of \(\Delta G^\ddag_{298} = 48.1\) kJ mol\(^{-1}\) (Fig. 5(b)). Inspection of Fig. 5(b), reveals that the graphene-catalyzed racemization of 1,1’-binaphthyl and BINOL involve similar equilibrium and transition structure complexes. We note that similar to the bowl-to-bowl inversion in corannulene and sumanene, this catalytic activity is driven by dispersion and electrostatic interactions. Following the above computational results for the graphene-catalyzed racemization of BINOL, this computational prediction has been confirmed experimentally through chiral HPLC measurements. In particular, it was found experimentally that a single-layer graphene sheet efficiently catalyzes the BINOL racemization, with near-complete racemization after 24 h at 60 °C.

Finally, we note that it has been demonstrated computationally that graphene can also catalyze the rotation about the C–C bond in biphenyl and substituted biphenyls. Biphenyl is a nonplanar aromatic compound in which steric repulsion between the hydrogens in the ortho positions results in a torsional angle between the two phenyl rings. For example, in unsubstituted biphenyl, the equilibrium torsional angle is 44.4°. The structure in which the torsional angle is 0° is a first-order saddle point corresponding to the rotation about the C–C bond. Thus, the rotation about the C–C bond in biphenyls involves nonplanar reactants/products and completely planar transition structures. Using DHDFT calculation, it was found that a nanographene can catalyze these rotation processes in the same manner as the birayl racemizations.

2.3 Pristine Graphene Catalyzed Skeletal Inversions of Helicenes and Cyclooctatetraene Derivatives

As a final example, we consider skeletal inversions in two types of polycyclic hydrocarbons – benzannulated cyclooctatetraenes and helicenes. Let us begin with the ring inversions of the 1,3,5,7-cyclooctatetraene (COT) skeleton. Cyclooctatetraene is the smallest nonplanar annulene, which adopts a tub shape to avoid antiaromaticity. This unique scaffold makes benzannulated COT derivatives versatile ligands in enantioselective catalysis. Here, we are interested in the series of benzannulated COT derivatives with an increasing level of benzannulenes in neighboring positions as shown in Fig. 6. This series of compounds has attracted significant theoretical and experimental attention.

The tub-to-tub inversion in COT and mono-benzannulated COT proceeds via completely planar transition structures. Due to steric repulsion between the adjacent benzene rings, however, the tub-to-tub inversions in di-, tri-, and tetra-benzannulated COT proceed via nonplanar transition structures. This set of skeletal inversions provides a series of increasing barrier heights. For example, at the PW6B95-D3BJ/Def2-TZVPP level of theory, the following barrier heights are obtained for the uncatalyzed inversions: 50.1 (mono-benzannulated COT), 126.3 (di-benzannulated COT), 171.6 (tri-benzannulated COT), and 322.0 (tetra-benzannulated COT) kJ mol\(^{-1}\). It is interesting to examine the graphene catalysis of these tub-to-tub inversions since they involve highly nonplanar equilibrium structures, but transition structures that are either completely planar (COT and mono-benzannulated COT) or significantly more planar than the corresponding equilibrium structures (di-, tri-, and tetra-benzannulated COT). It should be pointed out that the reaction barrier height for the tub-to-tub inversion in tetrabenzenanulated COT is so high that it will decompose upon heating before this large barrier can be surmounted. Therefore, a catalyst is essential for this skeletal inversion.

It has been shown computationally that a pristine graphene catalyst can efficiently catalyze the skeletal inversions of COT and the four benzannulated COT derivatives in Fig. 6. This is another example of a pristine-graphene-catalyzed process solely driven by shape complementarity and π-stacking interactions. In particular, at the PW6B95-D3BJ/Def2-TZVPP level of theory, the uncatalyzed barrier heights (vide supra) are reduced by 10.6 (COT), 15.1 (monobenzannulated COT), 37.3 (dibenzenanlated COT), 44.5 (tribenzenanulated COT), and 56.4 (tetrabenzenanulated COT) kJ mol\(^{-1}\). These catalytic enhancements correspond to barrier reductions by 17.5–30.2% relative to the uncatalyzed reaction barrier heights. We note that according to the Eyring equation, these catalytic enhancements translate to increases of 2–10 orders of magnitude in the reaction rate at room temperature.

The graphene-catalyzed skeletal inversions of the benzannulated COT derivatives in Fig. 6 allow us to examine the catalytic enhancements for a systematic series of benzannulated COT derivatives of increasing size and reaction barrier heights. Fig. 7 depicts the catalytic enhancements (\(\Delta G^\ddag_{298} = G^\ddag_{298,\text{uncat}} - G^\ddag_{298,\text{cat}}\)) for the series of benzannulated COT derivatives. It is evident that
these catalytic enhancements increase linearly with the number of benzannulations, indicating that the transition structure stabilization increases with the size of the system.

Finally, we note that a similar type of skeletal inversion – the ‘flip-flop’ inversion in helicenes – has also been found to be catalyzed by a nanographene. In particular, the smallest helicene (benzo[\(\text{c}\)]phenanthrene) has a nonplanar equilibrium structure due to steric repulsion between the hydrogens on the terminal phenyl rings. \[180\] Therefore, benzo[\(\text{c}\)]phenanthrene oscillates rapidly between two chiral helical conformations via a completely planar transition structure. Even though the calculated reaction barrier height is very low and amounts to \(17.9 \text{ kJ mol}^{-1}\), a small coronene catalyst is still able to reduce it by about \(20\%\); and it is expected that a larger nanographene would result in a larger catalytic enhancement. A question that remains unanswered is whether graphene would be able to catalyze the ‘flip-flop’ inversion in larger helicenes.

3 Conclusions

Pristine graphene is characterized by a large surface area, a planar two-dimensional morphology, and an evenly distributed \(\pi\)-system across the monolayer. These unique properties make pristine graphene an ideal catalyst for a range of chemical processes. This chapter summarizes recent computational (and some experimental) advances in this exciting emerging form of catalysis by pristine graphene. These theoretical and experimental results pave the way for developing sustainable and environmentally benign 2D graphene catalysts that are readily available and require no chemical modification or functionalization. In particular, based on extensive computational DFT simulations, it has been predicted that pristine graphene can efficiently catalyze the following chemical processes:

- Bowl-to-bowl inversion of curved aromatic molecules (e.g., corannulene and sumanene)
- Enantiomerizations of substituted biphenyl and biaryl compounds (e.g., 2,2’-dimethyl-biphenyl; 1,1’-binaphthyl; and BINOL),
- Skeletal inversions of helicenes (e.g., benzo[\(\text{c}\)]phenanthrene) and ortho-benzannulated cyclooctatetraene derivatives

Overall, a pristine graphene catalyst accelerates the rates of these reactions by several orders of magnitude. These catalytic enhancements are achieved through shape complementarity between the planar graphene and planar transition structure, enabling disproportionate stabilization of the transition structures relative to the non-planar reactants and products. DFT-based energy decomposition analyses show that this catalytic activity is mainly driven by dispersion and electrostatic forces. The inclusion of aromatic rings in the substrate can dramatically enhance the catalytic enhancement. However, aromatic rings are not strictly necessary for this form of catalysis to proceed. For example, a pristine graphene catalyst reduces the reaction barrier height for the tub-to-tub inversion in unsubstituted cyclooctatetraene by about \(20\%\), even though cyclooctatetraene has a nonaromatic equilibrium structure and an antiaromatic transition structure.

Importantly, the graphene-catalyzed enantiomerization of BINOL has been confirmed experimentally through chiral HPLC measurements shortly after the computational prediction has been made. \[669\] The catalysis of this enantiomerization reaction plays a key role in the synthesis of a wide range of biaryl from a BINOL precursor via dynamic kinetic resolution. This enantiomerization has been catalyzed by a homogeneous ruthenium catalyst in a recent dynamic kinetic resolution application. Thus, the catalytic enantiomerization of BINOL is an example where an organometallic catalyst could be replaced by an environmentally sustainable pristine graphene catalyst in a dynamic kinetic resolution application.

We also review the computational predictions that pristine graphene would catalyze the bowl-to-bowl inversions in corannulene and sumanene through shape complementarity and \(\pi\)-\(\pi\) interactions. The results show not only that a pristine graphene catalyst leads to significant catalytic enhancements of these bowl-to-bowl inversions, but also leads to a thermodynamic drive for directional self-assembly of the bowl situated face-up on the graphene monolayer. This directional self-assembly leads to a hybrid nanocarbon material with unique electronic properties due to the considerable dipole moments of corannulene and sumanene. We hope that these computational predictions will inspire experimental explorations of the graphene-catalyzed bowl-to-bowl inversion in corannulene and sumanene and the directional self-assembly of these bowl-shaped structures on across the graphene monolayer.

Finally, it should be noted that catalysis by pristine graphene paves the way for catalysis by other pristine 2D materials. To this end, it has been recently found, using extensive DHDF simulations, that the bowl-to-bowl inversion in corannulene and sumanene can be catalyzed by 2D materials with significantly different electronic structures and chemical compositions than graphene – namely inorganic hexagonal boron-nitride (h-BN) and alphagaphite. \[46\]

References

Graphene Catalysis Made Easy

